login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073744
Decimal expansion of tanh(1).
15
7, 6, 1, 5, 9, 4, 1, 5, 5, 9, 5, 5, 7, 6, 4, 8, 8, 8, 1, 1, 9, 4, 5, 8, 2, 8, 2, 6, 0, 4, 7, 9, 3, 5, 9, 0, 4, 1, 2, 7, 6, 8, 5, 9, 7, 2, 5, 7, 9, 3, 6, 5, 5, 1, 5, 9, 6, 8, 1, 0, 5, 0, 0, 1, 2, 1, 9, 5, 3, 2, 4, 4, 5, 7, 6, 6, 3, 8, 4, 8, 3, 4, 5, 8, 9, 4, 7, 5, 2, 1, 6, 7, 3, 6, 7, 6, 7, 1, 4, 4, 2, 1, 9, 0
OFFSET
0,1
COMMENTS
Also decimal expansion of tan(i)/i. - N. J. A. Sloane, Feb 12 2010
tanh(x) = (e^x - e^(-x)) / (e^x + e^(-x)).
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019
REFERENCES
S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.
LINKS
Eric Weisstein's World of Mathematics, Hyperbolic Tangent
Eric Weisstein's World of Mathematics, Hyperbolic Functions
FORMULA
Equals Sum_{k>=1} bernoulli(2*k)*2^(2*k)*(2^(2*k)-1)/(2*k)!, where bernoulli(k) = A027641(k)/A027642(k) is the k-th Bernoulli number. - Amiram Eldar, Aug 19 2020
Equal to the continued fraction [0;1,3,5,...,2n-1,...]. - Thomas Ordowski, Oct 22 2024
Equals 1-A349003. - Hugo Pfoertner, Oct 22 2024
EXAMPLE
0.76159415595576488811945828260...
MATHEMATICA
RealDigits[Tanh[1], 10, 100][[1]] (* Amiram Eldar, Aug 19 2020 *)
PROG
(PARI) tanh(1)
CROSSREFS
Cf. A004273 (continued fraction), A073747 (coth(1)=1/A073744), A073742 (sinh(1)), A073743 (cosh(1)), A073745 (csch(1)), A073746 (sech(1)).
Sequence in context: A319331 A371804 A010511 * A112253 A347074 A112252
KEYWORD
cons,nonn
AUTHOR
Rick L. Shepherd, Aug 07 2002
STATUS
approved