login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073743 Decimal expansion of cosh(1). 18
1, 5, 4, 3, 0, 8, 0, 6, 3, 4, 8, 1, 5, 2, 4, 3, 7, 7, 8, 4, 7, 7, 9, 0, 5, 6, 2, 0, 7, 5, 7, 0, 6, 1, 6, 8, 2, 6, 0, 1, 5, 2, 9, 1, 1, 2, 3, 6, 5, 8, 6, 3, 7, 0, 4, 7, 3, 7, 4, 0, 2, 2, 1, 4, 7, 1, 0, 7, 6, 9, 0, 6, 3, 0, 4, 9, 2, 2, 3, 6, 9, 8, 9, 6, 4, 2, 6, 4, 7, 2, 6, 4, 3, 5, 5, 4, 3, 0, 3, 5, 5, 8, 7, 0, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also decimal expansion of cos(i). - N. J. A. Sloane, Feb 12 2010

cosh(x) = (e^x + e^(-x))/2.

Equals sum_{n>=0} 1/A010050(n). See Gradsteyn-Ryzhik (0.245.5). - R. J. Mathar, Oct 27 2012

REFERENCES

S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.

LINKS

Ivan Panchenko, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Hyperbolic Cosine

Eric Weisstein's World of Mathematics, Hyperbolic Functions

Eric Weisstein's World of Mathematics, Factorial Sums

FORMULA

Continued fraction representation: cosh(1) = 1 + 1/(2 - 2/(13 - 12/(31 - ... - (2*n - 4)*(2*n - 5)/((4*n^2 - 10*n + 7) - ... )))). See A051396 for proof. Cf. A049470 (cos(1)) and A073742 (sinh(1)). - Peter Bala, Sep 05 2016

EXAMPLE

1.54308063481524377847790562075...

MAPLE

Digits:=100: evalf(cosh(1)); # Wesley Ivan Hurt, Nov 18 2014

MATHEMATICA

RealDigits[Cosh[1], 10, 120][[1]] (* Harvey P. Dale, Aug 03 2014 *)

PROG

(PARI) cosh(1)

CROSSREFS

Cf. A068118 (continued fraction), A073746 (sech(1)=1/A073743), A073742 (sinh(1)), A073744 (tanh(1)), A073745 (csch(1)), A073747 (coth(1)), A049470 (cos(1)).

Sequence in context: A019712 A020799 A199432 * A021652 A022961 A023447

Adjacent sequences:  A073740 A073741 A073742 * A073744 A073745 A073746

KEYWORD

cons,nonn

AUTHOR

Rick L. Shepherd, Aug 07 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 23 22:23 EDT 2017. Contains 291021 sequences.