login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051396
a(n) = (2*n-2)*(2*n-3)*a(n-1)+1.
12
0, 1, 3, 37, 1111, 62217, 5599531, 739138093, 134523132927, 32285551902481, 9879378882159187, 3754163975220491061, 1734423756551866870183, 957401913616630512341017, 622311243850809833021661051, 470467300351212233764375754557, 409306551305554643375006906464591
OFFSET
0,3
COMMENTS
The sequence 1,0,3,0,37,... has e.g.f. cosh(x)/(1-x^2) with a(n) = Sum_{k=0..n} C(n,k)k!(1+(-1)^k)(1+(-1)^(n-k))/4. - Paul Barry, May 01 2005
LINKS
Romeo Mestrovic, Variations of Kurepa's left factorial hypothesis, arXiv preprint arXiv:1312.7037 [math.NT], 2013.
Romeo Mestrovic, The Kurepa-Vandermonde matrices arising from Kurepa's left factorial hypothesis, Filomat 29:10 (2015), 2207-2215; DOI 10.2298/FIL1510207M.
Aleksandar Petojevic, On Kurepa's Hypothesis for the Left Factorial, FILOMAT (Nis), 12:1 (1998), p. 29-37.
FORMULA
a(n) = Sum_{k=0..n-1} (2*n-2)!/(2*k)! = floor((2*n-2)!*cosh(1)), n>=1. - Vladeta Jovovic, Aug 10 2002
a(n+1) = Sum_{k=0..2n}, C(2n, k)*k!*(1+(-1)^k)^2. - Paul Barry, May 01 2005
a(n) +(-4*n^2+10*n-7)*a(n-1) +2*(n-2)*(2*n-5)*a(n-2)=0. - R. J. Mathar, Nov 26 2012
From Peter Bala, Sep 05 2016: (Start)
The sequence b(n) := (2*n - 2)! also satisfies Mathar's recurrence with b(1) = 1, b(2) = 2. This leads to the continued fraction representation a(n) = (2*n - 2)!*(1 + 1/(2 - 2/(13 - 12/(31 - ... - (2*n - 4)*(2*n - 5)/(4*n^2 - 10*n + 7) )))) for n >= 3. Taking the limit gives the continued fraction representation cosh(1) = A073743 = 1 + 1/(2 - 2/(13 - 12/(31 - ... - (2*n - 4)*(2*n - 5)/((4*n^2 - 10*n + 7) - ... )))). (End)
MAPLE
A051396 := proc(n) option remember; if n <= 1 then n else (2*n-2)*(2*n-3)*A051396(n-1)+1; fi; end;
MATHEMATICA
a[0] = 0; a[n_] := a[n] = (2*n-2)*(2*n-3)*a[n-1] + 1;
Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Dec 11 2017 *)
nxt[{n_, a_}]:={n+1, a(4n^2-2n)+1}; NestList[nxt, {0, 0}, 20][[;; , 2]] (* Harvey P. Dale, Sep 26 2023 *)
CROSSREFS
Bisection of abs(A009179(n)). Cf. A049470 (cos(1)), A073743 (cosh(1)), A275651.
Sequence in context: A331345 A357398 A354334 * A113074 A128083 A270751
KEYWORD
nonn,easy
STATUS
approved