|
|
A051395
|
|
Numbers whose square is a sum of 4 consecutive primes.
|
|
11
|
|
|
6, 18, 24, 42, 48, 70, 144, 252, 258, 358, 378, 388, 396, 428, 486, 506, 510, 558, 608, 644, 864, 886, 960, 974, 1022, 1046, 1326, 1362, 1392, 1398, 1422, 1434, 1442, 1468, 1476, 1592, 1604, 1676, 1820, 1950, 2016, 2068, 2140, 2288, 2430, 2460
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
First of four consecutive primes in A206280.
|
|
LINKS
|
|
|
FORMULA
|
Numbers m such that m^2 = Sum_{i=k..k+3} prime(i) for some k.
|
|
EXAMPLE
|
6 is a term because 6*6 = 5 + 7 + 11 + 13;
18 is a term because 18*18 = 324 = 73 + 79 + 83 + 89.
|
|
PROG
|
(PARI) lista(nn) = {pr = primes(nn); for (i = 1, nn - 3, s = pr[i] + pr[i+1] + pr[i+2] + pr[i+3]; if (issquare(s), print1(sqrtint(s), ", ")); ); } \\ Michel Marcus, Oct 02 2013
(PARI) is(n)=n*=n; my(p=precprime(n\4), q=nextprime(n\4+1), r, s); if(n < 3*q+p+8, r=precprime(p-1); s=n-p-q-r; ispseudoprime(s) && (s == precprime(r-1) || s == nextprime(q+1)), r=nextprime(q+1); s=n-p-q-r; ispseudoprime(s) && (s == precprime(p-1) || s == nextprime(r+1))) \\ Charles R Greathouse IV, Oct 02 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Corrected and extended by Don Reble, Nov 20 2006
|
|
STATUS
|
approved
|
|
|
|