login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028887 Theta series of 4-dimensional 5-modular lattice with det 25 and minimal norm 2. 5
1, 6, 18, 24, 42, 6, 72, 48, 90, 78, 18, 72, 168, 84, 144, 24, 186, 108, 234, 120, 42, 192, 216, 144, 360, 6, 252, 240, 336, 180, 72, 192, 378, 288, 324, 48, 546, 228, 360, 336, 90, 252, 576, 264, 504, 78, 432, 288, 744, 342, 18, 432, 588, 324, 720, 72, 720, 480 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 463 Entry 4(i).

LINKS

John Cannon, Table of n, a(n) for n = 0..5000

Shaun Cooper and Dongxi Ye, Level 14 AND 15 Analogues of Ramanujan's Elliptic Functions to Alternative Bases, preprint, 2015.

G. Nebe and N. J. A. Sloane, Home page for this lattice

FORMULA

a(n) = 6*b(n) where b(n) is multiplicative with a(0) = 1,  b(5^e) = 1, b(p^e) = (p^(e+1) - 1) / (p - 1) otherwise. - Michael Somos, Feb 04 2006

G.f. 1 + 6 * (Sum_{k>0} k * x^k / (1 - x^k) - 5*k * x^(5*k) / (1 - x^(5*k))). - Michael Somos, Feb 04 2006

EXAMPLE

G.f. = 1 + 6*x + 18*x^2 + 24*x^3 + 42*x^4 + 6*x^5 + 72*x^6 + 48*x^7 + ...

G.f. = 1 + 6*q^2 + 18*q^4 + 24*q^6 + 42*q^8 + 6*q^10 + 72*q^12 + 48*q^14 + ...

MATHEMATICA

a[ n_] := If[ n < 1, Boole[ n == 0], 6 Sum[ If[ Mod[ d, 5] > 0, d, 0], {d, Divisors @ n }]];  (* Michael Somos, Jun 12 2014 *)

a[ n_] := SeriesCoefficient[ 1 + 6 Sum[ k x^k / (1 - x^k) - 5 k x^(5 k) / (1 - x^(5 k)), {k, n}], {x, 0, n}]; (* Michael Somos, Jun 12 2014 *)

PROG

(PARI) {a(n) = if( n<1, n==0, 6 * sumdiv(n, d, (d%5>0) * d))}; /* Michael Somos, Feb 04 2006 */

(PARI) {a(n) = my(G); if( n<0, 0, G = [ 2, 1, 0, 0; 1, 2, 1, 0; 0, 1, 4, 5; 0, 0, 5, 10]; polcoeff( 1 + 2 * x * Ser( qfrep( G, n, 1)), n))}; /* Michael Somos, Jun 12 2014 */

(Sage) ModularForms( Gamma0(5), 2, prec=70).0;  # Michael Somos, Jun 12 2014

(MAGMA) Basis( ModularForms( Gamma0(5), 2), 70) [1]; /* Michael Somos, Jun 12 2014 */

CROSSREFS

Sequence in context: A015707 A236864 A101527 * A283118 A274536 A051395

Adjacent sequences:  A028884 A028885 A028886 * A028888 A028889 A028890

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 15:37 EDT 2019. Contains 326178 sequences. (Running on oeis4.)