login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028887
Theta series of 4-dimensional 5-modular lattice with det 25 and minimal norm 2.
5
1, 6, 18, 24, 42, 6, 72, 48, 90, 78, 18, 72, 168, 84, 144, 24, 186, 108, 234, 120, 42, 192, 216, 144, 360, 6, 252, 240, 336, 180, 72, 192, 378, 288, 324, 48, 546, 228, 360, 336, 90, 252, 576, 264, 504, 78, 432, 288, 744, 342, 18, 432, 588, 324, 720, 72, 720, 480
OFFSET
0,2
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 463 Entry 4(i).
LINKS
FORMULA
a(n) = 6*b(n) where b(n) is multiplicative with a(0) = 1, b(5^e) = 1, b(p^e) = (p^(e+1) - 1) / (p - 1) otherwise. - Michael Somos, Feb 04 2006
G.f. 1 + 6 * (Sum_{k>0} k * x^k / (1 - x^k) - 5*k * x^(5*k) / (1 - x^(5*k))). - Michael Somos, Feb 04 2006
EXAMPLE
G.f. = 1 + 6*x + 18*x^2 + 24*x^3 + 42*x^4 + 6*x^5 + 72*x^6 + 48*x^7 + ...
G.f. = 1 + 6*q^2 + 18*q^4 + 24*q^6 + 42*q^8 + 6*q^10 + 72*q^12 + 48*q^14 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[ n == 0], 6 Sum[ If[ Mod[ d, 5] > 0, d, 0], {d, Divisors @ n }]]; (* Michael Somos, Jun 12 2014 *)
a[ n_] := SeriesCoefficient[ 1 + 6 Sum[ k x^k / (1 - x^k) - 5 k x^(5 k) / (1 - x^(5 k)), {k, n}], {x, 0, n}]; (* Michael Somos, Jun 12 2014 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 6 * sumdiv(n, d, (d%5>0) * d))}; /* Michael Somos, Feb 04 2006 */
(PARI) {a(n) = my(G); if( n<0, 0, G = [ 2, 1, 0, 0; 1, 2, 1, 0; 0, 1, 4, 5; 0, 0, 5, 10]; polcoeff( 1 + 2 * x * Ser( qfrep( G, n, 1)), n))}; /* Michael Somos, Jun 12 2014 */
(Sage) ModularForms( Gamma0(5), 2, prec=70).0; # Michael Somos, Jun 12 2014
(Magma) Basis( ModularForms( Gamma0(5), 2), 70) [1]; /* Michael Somos, Jun 12 2014 */
CROSSREFS
Sequence in context: A236864 A372566 A101527 * A283118 A274536 A051395
KEYWORD
nonn
STATUS
approved