login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274536
a(n) = 6 * sigma(n).
11
6, 18, 24, 42, 36, 72, 48, 90, 78, 108, 72, 168, 84, 144, 144, 186, 108, 234, 120, 252, 192, 216, 144, 360, 186, 252, 240, 336, 180, 432, 192, 378, 288, 324, 288, 546, 228, 360, 336, 540, 252, 576, 264, 504, 468, 432, 288, 744, 342, 558, 432, 588, 324, 720, 432, 720, 480, 540, 360, 1008, 372, 576, 624, 762
OFFSET
1,1
COMMENTS
6 times the sum of the divisors of n.
a(n) is also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) in which the structure of every 60-degree-three-dimensional sector arises after the 60-degree-zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is a six-pointed star formed by six rhombuses (see Links section).
FORMULA
a(n) = 6*A000203(n) = 3*A074400(n) = 2*A272027(n).
a(n) = A000203(n) + A274535(n) = A074400(n) + A239050(n).
Dirichlet g.f.: 6*zeta(s-1)*zeta(s). - Ilya Gutkovskiy, Jul 04 2016
Conjecture: a(n) = sigma(5*n) = A283118(n) iff n is not a multiple of 5. - Omar E. Pol, Oct 02 2018
MAPLE
with(numtheory): seq(6*sigma(n), n=1..64);
MATHEMATICA
6DivisorSigma[1, Range[50]] (* Alonso del Arte, Jul 04 2016 *)
PROG
(PARI) a(n) = 6 * sigma(n);
CROSSREFS
k times sigma(n), k=1..8: A000203, A074400, A272027, A239050, A274535, this sequence, A319527, A319528.
Sequence in context: A101527 A028887 A283118 * A051395 A256266 A228104
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jun 29 2016
STATUS
approved