login
A274534
Irregular triangle read by rows: T(n,k) = total number of k's in the first n antidiagonals of infinite Sudoku-type array A269526.
4
1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 3, 3, 2, 3, 2, 2, 3, 4, 3, 3, 3, 3, 1, 1, 4, 4, 4, 3, 4, 3, 2, 2, 1, 1, 5, 4, 4, 4, 5, 4, 3, 3, 2, 1, 1, 5, 5, 4, 5, 6, 5, 4, 4, 3, 1, 1, 1, 1, 5, 5, 5, 6, 7, 6, 5, 5, 4, 2, 2, 1, 1, 1, 5, 5, 6, 6, 7, 7, 6, 6, 5, 3, 3, 2, 1, 2, 1, 1, 5, 5, 6, 7, 7, 7, 7, 6, 6, 4, 4, 3, 2, 3, 2, 2, 1, 1
OFFSET
1,6
COMMENTS
T(n,k) is also the total number of (k-1)'s in the first n antidiagonals of the square array A274528.
LINKS
EXAMPLE
Triangle begins:
1;
1, 1, 1;
1, 2, 2, 1;
2, 2, 2, 2, 1, 1;
3, 3, 2, 3, 2, 2;
3, 4, 3, 3, 3, 3, 1, 1;
4, 4, 4, 3, 4, 3, 2, 2, 1, 1;
5, 4, 4, 4, 5, 4, 3, 3, 2, 1, 1;
5, 5, 4, 5, 6, 5, 4, 4, 3, 1, 1, 1, 1;
5, 5, 5, 6, 7, 6, 5, 5, 4, 2, 2, 1, 1, 1;
5, 5, 6, 6, 7, 7, 6, 6, 5, 3, 3, 2, 1, 2, 1, 1;
5, 5, 6, 7, 7, 7, 7, 6, 6, 4, 4, 3, 2, 3, 2, 2, 1, 1;
5, 5, 7, 8, 7, 8, 8, 7, 7, 5, 5, 4, 3, 4, 3, 3, 1, 1;
...
For n = 3, the first three antidiagonals of the square array A269526 are [1], [3, 2], [2, 4, 3]. There are only one 1, two 2's, two 3's and only one 4, so the third row of the triangle is [1, 2, 2, 1].
CROSSREFS
Row sums give A000217, n >= 1.
Row lengths give A274529.
Sequence in context: A291592 A159905 A283735 * A224030 A233136 A339717
KEYWORD
nonn,look,tabf
AUTHOR
Omar E. Pol, Jun 30 2016
STATUS
approved