login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274537 Number T(n,k) of set partitions of [n] into k blocks such that each element is contained in a block whose index parity coincides with the parity of the element; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 10
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 3, 2, 1, 0, 0, 1, 3, 7, 2, 1, 0, 0, 1, 7, 14, 13, 3, 1, 0, 0, 1, 7, 35, 26, 22, 3, 1, 0, 0, 1, 15, 70, 113, 66, 34, 4, 1, 0, 0, 1, 15, 155, 226, 311, 102, 50, 4, 1, 0, 0, 1, 31, 310, 833, 933, 719, 200, 70, 5, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,19

COMMENTS

All odd elements are in blocks with an odd index and all even elements are in blocks with an even index.

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

Wikipedia, Partition of a set

EXAMPLE

T(6,2) = 1: 135|246.

T(6,3) = 3: 13|246|5, 15|246|3, 1|246|35.

T(6,4) = 7: 13|24|5|6, 15|24|3|6, 1|24|35|6, 15|26|3|4, 15|2|3|46, 1|26|35|4, 1|2|35|46.

T(6,5) = 2: 1|26|3|4|5, 1|2|3|46|5.

T(6,6) = 1: 1|2|3|4|5|6.

Triangle T(n,k) begins:

  1;

  0, 1;

  0, 0, 1;

  0, 0, 1,  1;

  0, 0, 1,  1,   1;

  0, 0, 1,  3,   2,   1;

  0, 0, 1,  3,   7,   2,   1;

  0, 0, 1,  7,  14,  13,   3,   1;

  0, 0, 1,  7,  35,  26,  22,   3,  1;

  0, 0, 1, 15,  70, 113,  66,  34,  4, 1;

  0, 0, 1, 15, 155, 226, 311, 102, 50, 4, 1;

MAPLE

b:= proc(n, m, t) option remember; `if`(n=0, x^m, add(

     `if`(irem(j, 2)=t, b(n-1, max(m, j), 1-t), 0), j=1..m+1))

    end:

T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0, 1)):

seq(T(n), n=0..12);

MATHEMATICA

b[n_, m_, t_] := b[n, m, t] = If[n==0, x^m, Sum[If[Mod[j, 2]==t, b[n-1, Max[m, j], 1-t], 0], {j, 1, m+1}]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0, 1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-Fran├žois Alcover, Dec 18 2016, after Alois P. Heinz *)

CROSSREFS

Row sums give A274538.

Columns k=0-10 give: A000007, A000007(n-1), A000012(n-2), A052551(n-3), A274868, A274869, A274870, A274871, A274872, A274873, A274874.

T(2n,n) gives A274875.

Main diagonal and lower diagonals give: A000012, A004526, A002623(n-2) or A173196.

Sequence in context: A330959 A083199 A327187 * A305234 A021761 A221960

Adjacent sequences:  A274534 A274535 A274536 * A274538 A274539 A274540

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jun 27 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 28 12:03 EDT 2021. Contains 348329 sequences. (Running on oeis4.)