This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274540 Decimal expansion of exp(sqrt(2)). 4
 4, 1, 1, 3, 2, 5, 0, 3, 7, 8, 7, 8, 2, 9, 2, 7, 5, 1, 7, 1, 7, 3, 5, 8, 1, 8, 1, 5, 1, 4, 0, 3, 0, 4, 5, 0, 2, 4, 0, 1, 6, 6, 3, 9, 4, 3, 1, 5, 1, 1, 0, 9, 6, 1, 0, 0, 6, 8, 3, 6, 4, 7, 0, 9, 8, 5, 1, 5, 0, 9, 7, 8, 5, 8, 3, 0, 8, 0, 7, 3, 2, 7, 9, 1, 6, 5, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Define P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k) for n >= 1, and P(0) = 1, with x(q) = C1 and x(n) = 1 for all other n. We find that C2 = lim_{n -> infinity} P(n) = exp((C1-1)/q). The structure of the n!*P(n) formulas leads to the multinomial coefficients A036039. Some transform pairs: C1 = A002162 (log(2)) and C2 = A135002 (2/exp(1)); C1 = A016627 (log(4)) and C2 = A135004 (4/exp(1)); C1 = A001113 (exp(1)) and C2 = A234473 (exp(exp(1)-1)). LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 The Dev Team and Simon Plouffe, The Inverse Symbolic Calculator (ISC). FORMULA c = exp(sqrt(2)). c = lim_{n -> infinity} P(n) with P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k) for n >= 1, and P(0) = 1, with x(1) = (1 + sqrt(2)), the silver mean A014176, and x(n) = 1 for all other n. EXAMPLE c = 4.113250378782927517173581815140304502401663943151... MAPLE Digits := 80: evalf(exp(sqrt(2))); # End program 1. P := proc(n) : if n=0 then 1 else P(n) := expand((1/n)*(add(x(n-k)*P(k), k=0..n-1))) fi; end: x := proc(n): if n=1 then (1 + sqrt(2)) else 1 fi: end: Digits := 49; evalf(P(120)); # End program 2. MATHEMATICA First@ RealDigits@ N[Exp[Sqrt@ 2], 80] (* Michael De Vlieger, Jun 27 2016 *) PROG (PARI) my(x=exp(sqrt(2))); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", ")) \\ Felix Fröhlich, Jun 27 2016 CROSSREFS Cf. A274541, A274542, A036039, A135002, A135004, A234473. Cf. A014176, A002193, A010503, A131594, A020765, A010466, A020775. Sequence in context: A016524 A087963 A316586 * A010323 A261790 A174834 Adjacent sequences:  A274537 A274538 A274539 * A274541 A274542 A274543 KEYWORD cons,nonn AUTHOR Johannes W. Meijer, Jun 27 2016 EXTENSIONS More terms from Jon E. Schoenfield, Mar 15 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 16:51 EDT 2019. Contains 328120 sequences. (Running on oeis4.)