login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A016627 Decimal expansion of log(4). 25
1, 3, 8, 6, 2, 9, 4, 3, 6, 1, 1, 1, 9, 8, 9, 0, 6, 1, 8, 8, 3, 4, 4, 6, 4, 2, 4, 2, 9, 1, 6, 3, 5, 3, 1, 3, 6, 1, 5, 1, 0, 0, 0, 2, 6, 8, 7, 2, 0, 5, 1, 0, 5, 0, 8, 2, 4, 1, 3, 6, 0, 0, 1, 8, 9, 8, 6, 7, 8, 7, 2, 4, 3, 9, 3, 9, 3, 8, 9, 4, 3, 1, 2, 1, 1, 7, 2, 6, 6, 5, 3, 9, 9, 2, 8, 3, 7, 3, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Constant cited in the Percus reference. - Jonathan Vos Post, Aug 13 2008

This constant (negated) is also the 1-dimensional analog of Madelung's constant. - Jean-Fran├žois Alcover, May 20 2014

This constant is the sum over the reciprocals of the hexagonal numbers A000384(n), n >= 1. See the Downey et al. link, and the formula by Robert G. Wilson v below. - Wolfdieter Lang, Sep 12 2016

log(4) - 1 is the mean ratio between the smaller length and the larger length of the two parts of a stick that is being broken at a point that is uniformly chosen at random (Mosteller, 1965). - Amiram Eldar, Jul 25 2020

From Bernard Schott, Sep 11 2020: (Start)

This constant was the subject of the problem B5 during the 42nd Putnam competition in 1981 (see formula Sep 11 2020 and Putnam link).

Jeffrey Shallit generalizes this result obtained for base 2 to any base b (see Amer. Math. Month. link): Sum_{k>=1} digsum(k)_b / (k*(k+1)) = (b/(b-1)) * log(b) where digsum(k)_b is the sum of the digits of k when expressed in base b (for base 10 see A334388). (End)

REFERENCES

Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Frederick Mosteller, Fifty challenging problems of probability, Dover, New York, 1965. See problem 42, pp. 10 and 63.

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..20000

Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

Lawrence Downey, Boon W. Ong, and James A. Sellers, Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers, Coll. Math. J., 39, no. 5 (2008), 391-394.

D. H. Lehmer, Interesting series involving the Central Binomial Coefficient, Am. Math. Monthly 92, no 7 (1985) 449-457.

Allon G. Percus, Gabriel Istrate, Bruno Goncalves, Robert Z. Sumi and Stefan Boettcher, The Peculiar Phase Structure of Random Graph Bisection, arXiv:0808.1549 [cond-mat.stat-mech], 2008.

J. O. Shallit, Solutions of Advanced Problems, 6450, The American Mathematical Monthly, Vol. 92, No. 7, Aug.-Sep., 1985, pp. 513-514; DOI: 10.2307/2322523.

42nd Putnam Competition, Problem B5, 1981.

Index entries for sequences related to Olympiads and other Mathematical competitions.

Index entries for transcendental numbers.

FORMULA

log(4) = Sum_{k >= 1} H(k)/2^k where H(k) is the k-th harmonic number. - Benoit Cloitre, Jun 15 2003

Equals 1 - Sum_{k >= 1} (-1)^k/A002378(k) = 1 + 2*Sum_{k >= 0} 1/A069072(k) = 5/4 - Sum_{k >= 1} (-1)^k/A007531(k+2). - R. J. Mathar, Jan 23 2009

Equals 2*A002162 = Sum_{n >= 1} binomial(2*n, n)/(n*4^n) [D. H. Lehmer, Am. Math. Monthly 92 (1985) 449 and Jolley eq. 262]. - R. J. Mathar, Mar 04 2009

log(4) = Sum_{k >= 1} A191907(4, k)/k, (conjecture). - Mats Granvik, Jun 19 2011

log(4) = lim_{n -> infinity} A066066(n)/n. - M. F. Hasler, Oct 20 2013

Equals Sum_{k >= 1} 1/( 2*k^2 - k ). - Robert G. Wilson v, Aug 31 2014

Equals gamma(0, 1/2) - gamma(0, 1) = -(EulerGamma + polygamma(0, 1/2)), where gamma(n,x) denotes the generalized Stieltjes constants. - Peter Luschny, May 16 2018

From Amiram Eldar, Jul 25 2020: (Start)

Equals Sum_{k>=1} (3/4)^k/k.

Equals Sum_{k>=1} 1/(k*2^(k-1)) = Sum_{k>=1} 1/A001787(k).

Equals Integral_{x=0..1} log(1+1/x) dx. (End)

Equals Sum_{k>=1} A000120(k) / (k*(k+1)). - Bernard Schott, Sep 11 2020

EXAMPLE

1.38629436111989061883446424291635313615100026872051050824136...

MATHEMATICA

RealDigits[Log@ 4, 10, 111][[1]] (* Robert G. Wilson v, Aug 31 2014 *)

PROG

(PARI) default(realprecision, 20080); x=log(4); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016627.txt", n, " ", d)); \\ Harry J. Smith, May 16 2009, corrected May 19 2009

(PARI) A016627_vec(N)=digits(floor(log(precision(4., N))*10^(N-1))) \\ Or: default(realprecision, N); digits(log(4)\.1^N) \\ M. F. Hasler, Oct 20 2013

CROSSREFS

Cf. A016732 (continued fraction).

Cf. A000384, A001787, A002162, A002378, A007531, A066066, A069072, A191907.

Cf. A000120, A334388.

Sequence in context: A021263 A246727 A081803 * A175184 A019604 A336079

Adjacent sequences:  A016624 A016625 A016626 * A016628 A016629 A016630

KEYWORD

nonn,base,cons

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 01:01 EST 2020. Contains 338864 sequences. (Running on oeis4.)