login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191907
Square array read by antidiagonals up: T(n,k) = -(n-1) if n divides k, else 1.
5
0, 1, 0, 1, -1, 0, 1, 1, 1, 0, 1, 1, -2, -1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, -3, 1, -1, 0, 1, 1, 1, 1, 1, -2, 1, 0, 1, 1, 1, 1, -4, 1, 1, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, -5, 1, -3, -2, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, -6, 1, 1, 1, 1, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, -4, 1, -2, 1, 0, 1, 1, 1, 1, 1, 1, 1, -7, 1, 1, 1, -3, 1, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
OFFSET
1,13
COMMENTS
Apart from the top row, the same as A177121.
Sum_{k>=1} T(n,k)/k = log(n); this has been pointed out by Jaume Oliver Lafont in A061347 and A002162.
FORMULA
If n divides k then T(n,k) = -(n-1) else 1.
EXAMPLE
Table starts:
0..0..0..0..0..0..0..0..0...
1.-1..1.-1..1.-1..1.-1..1...
1..1.-2..1..1.-2..1..1.-2...
1..1..1.-3..1..1..1.-3..1...
1..1..1..1.-4..1..1..1..1...
1..1..1..1..1.-5..1..1..1...
1..1..1..1..1..1.-6..1..1...
1..1..1..1..1..1..1.-7..1...
1..1..1..1..1..1..1..1.-8...
MATHEMATICA
Clear[t, n, k];
nn = 30;
t[n_, k_] := t[n, k] = If[Mod[n, k] == 0, -(k - 1), 1]
MatrixForm[Transpose[Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]]]
PROG
(PARI) N=20; M=matrix(N, N, n, k, if(n%k==0, 1-k, 1))~
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Mats Granvik, Jun 19 2011
STATUS
approved