login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191906
The remainder of (product of proper divisors of n) mod (sum of proper divisors of n).
6
0, 0, 2, 0, 0, 0, 1, 3, 2, 0, 0, 0, 4, 6, 4, 0, 9, 0, 4, 10, 8, 0, 0, 5, 10, 1, 0, 0, 36, 0, 1, 3, 14, 9, 41, 0, 16, 5, 0, 0, 0, 0, 16, 12, 20, 0, 44, 7, 6, 9, 36, 0, 54, 4, 0, 11, 26, 0, 0, 0, 28, 33, 8, 8, 66, 0, 42, 15, 10, 0, 81, 0, 34, 39, 16, 1, 72, 0, 10, 9, 38, 0, 84, 16, 40, 21
OFFSET
2,3
FORMULA
a(n) = A007956(n) mod A001065(n).
EXAMPLE
a(2) = 1 mod 1 = 0;
a(3) = 1 mod 1 = 0;
a(4) = 2 mod 3 = 2.
MAPLE
A007956 := n -> mul(i, i=op(numtheory[divisors](n) minus {1, n}));
A001065 := proc(n) numtheory[sigma](n)-n ; end proc:
A191906 := proc(n) A007956(n) mod A001065(n) ; end proc:
seq(A191906(n), n=2..90) ; # R. J. Mathar, Jun 25 2011
MATHEMATICA
Table[With[{pd=Most[Divisors[n]]}, Mod[Times@@pd, Total[pd]]], {n, 2, 90}] (* Harvey P. Dale, Nov 24 2021 *)
PROG
(PARI) A191906(n) = { my(m=1, s=0); fordiv(n, d, if(d<n, m *= d; s += d)); (m%s); }; \\ Antti Karttunen, Jul 11 2019
CROSSREFS
KEYWORD
nonn,look
AUTHOR
STATUS
approved