|
|
A191909
|
|
Decimal expansion of the limit of the square root of the ratio of consecutive Padovan numbers.
|
|
0
|
|
|
8, 6, 8, 8, 3, 6, 9, 6, 1, 8, 3, 2, 7, 0, 9, 3, 0, 1, 8, 0, 6, 5, 6, 9, 9, 6, 4, 1, 9, 1, 0, 9, 7, 2, 2, 2, 4, 7, 7, 4, 6, 5, 6, 6, 2, 0, 1, 4, 4, 9, 9, 3, 1, 6, 9, 2, 6, 0, 8, 7, 1, 9, 8, 5, 6, 1, 2, 6, 0, 2, 2, 0, 7, 5, 2, 2, 7, 7, 7, 4, 1, 1, 8, 1, 4, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
This is the square root of the inverse of the plastic number A060006: 1.32471795724...
This is the positive root of x^6 + x^4 - 1 = 0 and the square root of A075778.
An algebraic integer of degree 6 and minimal polynomial x^6 + x^4 - 1. - Charles R Greathouse IV, Apr 21 2016
|
|
LINKS
|
Table of n, a(n) for n=0..85.
Wikipedia, Plastic number
|
|
EXAMPLE
|
0.868836961832709301806569964191...
|
|
MATHEMATICA
|
RealDigits[x/.FindRoot[x^6+x^4==1, {x, .8}, WorkingPrecision->120]][[1]] (* Harvey P. Dale, Jan 17 2014 *)
|
|
PROG
|
(PARI) polrootsreal(x^6+x^4-1)[2] \\ Charles R Greathouse IV, Apr 21 2016
|
|
CROSSREFS
|
Cf. A000931, A060006.
Sequence in context: A355185 A188655 A282152 * A247559 A246768 A088541
Adjacent sequences: A191906 A191907 A191908 * A191910 A191911 A191912
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Fabrice Auzanneau, Jun 19 2011
|
|
STATUS
|
approved
|
|
|
|