The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060006 Decimal expansion of real root of x^3 - x - 1 (the plastic constant). 68
 1, 3, 2, 4, 7, 1, 7, 9, 5, 7, 2, 4, 4, 7, 4, 6, 0, 2, 5, 9, 6, 0, 9, 0, 8, 8, 5, 4, 4, 7, 8, 0, 9, 7, 3, 4, 0, 7, 3, 4, 4, 0, 4, 0, 5, 6, 9, 0, 1, 7, 3, 3, 3, 6, 4, 5, 3, 4, 0, 1, 5, 0, 5, 0, 3, 0, 2, 8, 2, 7, 8, 5, 1, 2, 4, 5, 5, 4, 7, 5, 9, 4, 0, 5, 4, 6, 9, 9, 3, 4, 7, 9, 8, 1, 7, 8, 7, 2, 8, 0, 3, 2, 9, 9, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Has been also called the silver number, also the plastic number. This is the smallest Pisot-Vijayaraghavan number. The name "plastic number" goes back to the Dutch Benedictine monk and architect Dom Hans van der Laan, who gave this name 4 years after the discovery of the number by the French engineer Gérard Cordonnier in 1924, who used the name "radiant number". - Hugo Pfoertner, Oct 07 2018 Sometimes denoted by the symbol rho. - Ed Pegg Jr, Feb 01 2019 Also the solution of 1/x + 1/(1+x+x^2) = 1. - Clark Kimberling, Jan 02 2020 Given any complex p such that real(p)>-1, this constant is the only real solution of the equation z^p+z^(p+1)=z^(p+3), and the only attractor of the complex mapping z->M(z,p), where M(z,p)=(z^p+z^(p+1))^(1/(p+3)), convergent from any complex plane point. - Stanislav Sykora, Oct 14 2021 The Pisot-Vijayaraghavan numbers were named after the French mathematician Charles Pisot (1910-1984) and the Indian mathematician Tirukkannapuram Vijayaraghavan (1902-1955). - Amiram Eldar, Apr 02 2022 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2. Midhat J. Gazalé, Gnomon: From Pharaohs to Fractals, Princeton University Press, Princeton, NJ, 1999, see Chap. VII. Donald E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4, p. 236. Ian Stewart, A Guide to Computer Dating (Feedback), Scientific American, Vol. 275 No. 5, November 1996, p. 118. Dom Hans van der Laan, Le nombre plastique: Quinze leçons sur l’ordonnance architectonique, Brill Academic Pub., Leiden, 1960. LINKS Harry J. Smith, Table of n, a(n) for n = 1..20000 Alex Bellos, The golden ratio has spawned a beautiful new curve: the Harriss spiral, The Guardian, Jan 13 2015. Gamaliel Cerda-Morales, New Identities for Padovan Numbers, arXiv:1904.05492 [math.CO], 2019. Brady Haran and Edmund Harriss, The Plastic Ratio, Numberphile video (2019). Ed Pegg Jr., Pictures based on the plastic constant Simon Plouffe, Smallest Pisot-Vijayaraghavan number to 50000 digits Simon Plouffe, The Smallest Pisot-Vijayaraghavan number F. Rothelius, Formulae. Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103. Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103. Michel Waldschmidt, Lectures on Multiple Zeta Values, IMSC 2011. Eric Weisstein's World of Mathematics, Pisot-Vijayaraghavan Constant. Eric Weisstein's World of Mathematics, Pisot Number. Eric Weisstein's World of Mathematics, Plastic Constant. Wikipedia, Plastic number. FORMULA Equals (1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3). - Henry Bottomley, May 22 2003 Equals CubeRoot(1 + CubeRoot(1 + CubeRoot(1 + CubeRoot(1 + ...)))). - Gerald McGarvey, Nov 26 2004 Equals sqrt(1+1/sqrt(1+1/sqrt(1+1/sqrt(1+...)))). - Gerald McGarvey, Mar 18 2006 Equals (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3). - Eric Desbiaux, Oct 17 2008 Equals Sum_{k >= 0} 27^(-k)/k!*(Gamma(2*k+1/3)/(9*Gamma(k+4/3)) - Gamma(2*k-1/3)/(3*Gamma(k+2/3))). - Robert Israel, Jan 13 2015 Equals sqrt(Phi) = sqrt(1.754877666246...) (see A109134). - Philippe Deléham, Sep 29 2020 Equals cosh(arccosh(3*c)/3)/c, where c = sqrt(3)/2 (A010527). - Amiram Eldar, May 15 2021 EXAMPLE 1.32471795724474602596090885447809734... MAPLE (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3) ; evalf(%, 130) ; # R. J. Mathar, Jan 22 2013 MATHEMATICA RealDigits[ Solve[x^3 - x - 1 == 0, x][[1, 1, 2]], 10, 111][] (* Robert G. Wilson v, Sep 30 2009 *) s = Sqrt[23/108]; RealDigits[(1/2 + s)^(1/3) + (1/2 - s)^(1/3), 10, 111][] (* Robert G. Wilson v, Dec 12 2017 *) RealDigits[Root[x^3-x-1, 1], 10, 120][] (* or *) RealDigits[(Surd[9-Sqrt, 3]+Surd[9+Sqrt, 3])/(Surd[2, 3]Surd[9, 3]), 10, 120][] (* Harvey P. Dale, Sep 04 2018 *) PROG (PARI) allocatemem(932245000); default(realprecision, 20080); x=solve(x=1, 2, x^3 - x - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b060006.txt", n, " ", d)); \\ Harry J. Smith, Jul 01 2009 (PARI) (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3) \\ Altug Alkan, Apr 10 2016 (PARI) polrootsreal(x^3-x-1) \\ Charles R Greathouse IV, Aug 28 2016 (Magma) SetDefaultRealField(RealField(100)); ((3+Sqrt(23/3))/6)^(1/3) + ((3-Sqrt(23/3))/6)^(1/3); // G. C. Greubel, Mar 15 2019 (Sage) numerical_approx(((3+sqrt(23/3))/6)^(1/3) + ((3-sqrt(23/3))/6)^(1/3), digits=100) # G. C. Greubel, Mar 15 2019 CROSSREFS Cf. A001622. A072117 gives continued fraction. Cf. A006888, A010527, A051016, A051017, A084252, A075778 (inverse), A126772. Other Pisot numbers: A086106, A092526, A228777, A293506, A293508, A293509, A293557. Sequence in context: A121861 A338213 A317736 * A123097 A352419 A209706 Adjacent sequences:  A060003 A060004 A060005 * A060007 A060008 A060009 KEYWORD cons,nice,nonn AUTHOR Fabian Rothelius, Mar 14 2001 EXTENSIONS Edited and extended by Robert G. Wilson v, Aug 03 2002 Removed incorrect comments, Joerg Arndt, Apr 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 08:03 EDT 2022. Contains 353852 sequences. (Running on oeis4.)