OFFSET
0,5
COMMENTS
Number of permutations of n letters where exactly four change position.
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
Equals 3*A050534. - Zerinvary Lajos, Feb 12 2007
G.f.: 9*x^4/(1-x)^5. - Colin Barker, Jul 02 2012
From Amiram Eldar, Jul 19 2022: (Start)
Sum_{n>=4} 1/a(n) = 4/27.
Sum_{n>=4} (-1)^n/a(n) = 32*log(2)/9 - 64/27. (End)
EXAMPLE
a(6) = 135 since there are 15 ways to choose the four points that move and 9 ways to move them and 15*9 = 135.
MATHEMATICA
9*Binomial[Range[0, 40], 4] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 0, 9}, 40] (* Harvey P. Dale, Jun 09 2014 *)
PROG
(PARI) { for (n=0, 1000, write("b060008.txt", n, " ", 3*n*(n - 1)*(n - 2)*(n - 3)/8); ) } \\ Harry J. Smith, Jul 01 2009
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Mar 16 2001
STATUS
approved