The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060008 a(n) = 9*binomial(n,4) = 3n*(n-1)*(n-2)*(n-3)/8. 5
 0, 0, 0, 0, 9, 45, 135, 315, 630, 1134, 1890, 2970, 4455, 6435, 9009, 12285, 16380, 21420, 27540, 34884, 43605, 53865, 65835, 79695, 95634, 113850, 134550, 157950, 184275, 213759, 246645, 283185, 323640, 368280, 417384, 471240, 530145, 594405 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Number of permutations of n letters where exactly four change position. LINKS Harry J. Smith, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA Equals 3*A050534. - Zerinvary Lajos, Feb 12 2007 G.f.: 9*x^4/(1-x)^5. - Colin Barker, Jul 02 2012 From Amiram Eldar, Jul 19 2022: (Start) Sum_{n>=4} 1/a(n) = 4/27. Sum_{n>=4} (-1)^n/a(n) = 32*log(2)/9 - 64/27. (End) EXAMPLE a(6) = 135 since there are 15 ways to choose the four points that move and 9 ways to move them and 15*9 = 135. MATHEMATICA 9*Binomial[Range[0, 40], 4] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 0, 9}, 40] (* Harvey P. Dale, Jun 09 2014 *) PROG (PARI) { for (n=0, 1000, write("b060008.txt", n, " ", 3*n*(n - 1)*(n - 2)*(n - 3)/8); ) } \\ Harry J. Smith, Jul 01 2009 CROSSREFS For changing 0, 1, 2, 3, 4, 5, n-4, n elements see A000012, A000004, A000217 (offset), A007290, A060008, A060836, A000475, A000166. Also see A000332, A008290. A diagonal of A008291. Sequence in context: A188351 A220443 A289721 * A212089 A212142 A095166 Adjacent sequences: A060005 A060006 A060007 * A060009 A060010 A060011 KEYWORD easy,nonn AUTHOR Henry Bottomley, Mar 16 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 21:40 EST 2024. Contains 370288 sequences. (Running on oeis4.)