login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060008
a(n) = 9*binomial(n,4) = 3n*(n-1)*(n-2)*(n-3)/8.
5
0, 0, 0, 0, 9, 45, 135, 315, 630, 1134, 1890, 2970, 4455, 6435, 9009, 12285, 16380, 21420, 27540, 34884, 43605, 53865, 65835, 79695, 95634, 113850, 134550, 157950, 184275, 213759, 246645, 283185, 323640, 368280, 417384, 471240, 530145, 594405
OFFSET
0,5
COMMENTS
Number of permutations of n letters where exactly four change position.
FORMULA
Equals 3*A050534. - Zerinvary Lajos, Feb 12 2007
G.f.: 9*x^4/(1-x)^5. - Colin Barker, Jul 02 2012
From Amiram Eldar, Jul 19 2022: (Start)
Sum_{n>=4} 1/a(n) = 4/27.
Sum_{n>=4} (-1)^n/a(n) = 32*log(2)/9 - 64/27. (End)
EXAMPLE
a(6) = 135 since there are 15 ways to choose the four points that move and 9 ways to move them and 15*9 = 135.
MATHEMATICA
9*Binomial[Range[0, 40], 4] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 0, 9}, 40] (* Harvey P. Dale, Jun 09 2014 *)
PROG
(PARI) { for (n=0, 1000, write("b060008.txt", n, " ", 3*n*(n - 1)*(n - 2)*(n - 3)/8); ) } \\ Harry J. Smith, Jul 01 2009
CROSSREFS
For changing 0, 1, 2, 3, 4, 5, n-4, n elements see A000012, A000004, A000217 (offset), A007290, A060008, A060836, A000475, A000166. Also see A000332, A008290.
A diagonal of A008291.
Sequence in context: A188351 A220443 A289721 * A212089 A212142 A095166
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Mar 16 2001
STATUS
approved