login
A060836
Number of permutations of n letters where exactly 5 change position.
3
0, 0, 0, 0, 44, 264, 924, 2464, 5544, 11088, 20328, 34848, 56628, 88088, 132132, 192192, 272272, 376992, 511632, 682176, 895356, 1158696, 1480556, 1870176, 2337720, 2894320, 3552120, 4324320, 5225220, 6270264, 7476084, 8860544, 10442784, 12243264, 14283808, 16587648
OFFSET
1,5
FORMULA
a(n) = 44*binomial(n, 5).
a(n) = a(n-1)*n/(n-5).
G.f.: 44*x^5/(1 - x)^6. - Colin Barker, Apr 22 2012
EXAMPLE
a(8) = a(7) * 8/(8-5) = 924 * 8/3 = 2464.
PROG
(PARI) a(n) = { 44*binomial(n, 5) } \\ Harry J. Smith, Jul 19 2009
CROSSREFS
For changing 0, 1, 2, 3, 4, 5, n-4, n elements see A000012, A000004, A000217 (offset), A007290, A060008, A060836, A000475, A000166. Also see A000332, A008290.
Rencontre sequences are A000166 A000240 A000387 A000449 and A000475.
A diagonal of A008291.
Sequence in context: A031175 A098826 A160284 * A135182 A094794 A001689
KEYWORD
nonn,easy
AUTHOR
Robert Goodhand (rgoodhand(AT)hotmail.com), May 12 2001
STATUS
approved