login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000449 Rencontres numbers: number of permutations of [n] with exactly 3 fixed points.
(Formerly M4700 N2009)
20
1, 0, 10, 40, 315, 2464, 22260, 222480, 2447445, 29369120, 381798846, 5345183480, 80177752655, 1282844041920, 21808348713320, 392550276838944, 7458455259940905, 149169105198816960, 3132551209175157490, 68916126601853463240 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,3

REFERENCES

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 3..100

FindStat - Combinatorial Statistic Finder, The number of fixed points of a permutation

FORMULA

a(n) = Sum_{j=2..n-3} (-1)^j*n!/(3!*j!).

For n >= 3 a(n) = C(n, 3) * A000166(n-3) = 1/6 * n! * Sum_{k=0..n-3} (-1)^k/k!. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 14 2001

E.g.f.: 1/(exp(x)*(1-x))*(x^3)/6. - Wenjin Woan, Nov 20 2008

From Paul Weisenhorn, May 30 2010: (Start)

a(n) = binomial(n,3)*A000166(n-3) with 3 fixed-points;

a(n) = binomial(n,k)*A000166(n-k) with k fixed-points.

(End)

E.g.f.: x^3*exp(-x)/(3!*(1-x)). - Geoffrey Critzer, Nov 03 2012

a(n) ~ n! * exp(-1)/6. - Vaclav Kotesovec, Mar 17 2014

a(n) = n*a(n-1) - (-1^n)*n*(n-1)*(n-2)/6, a(n) = 0 for n= 0, 1, 2. - Chai Wah Wu, Sep 23 2014

O.g.f.: (1/6)*Sum_{k>=3} k!*x^k/(1 + x)^(k+1). - Ilya Gutkovskiy, Apr 13 2017

MAPLE

# with k fixed-points:

G:=exp(-z)*z^k/((1-z)*k!: Gser:=series(G, z, 21):

for n from k to 20 do a(n)=n!*coeff(Gser, z, n): end do: # Paul Weisenhorn, May 30 2010

MATHEMATICA

Table[Subfactorial[n - 3]*Binomial[n, 3], {n, 3, 22}] (* Zerinvary Lajos, Jul 10 2009 *)

PROG

(PARI) my(x='x+O('x^66)); Vec( serlaplace(exp(-x)/(1-x)*(x^3/3!)) ) \\ Joerg Arndt, Feb 19 2014

(Python)

A000449_list, m, x = [], 1, 0

for n in range(3, 21):

x, m = x*n + m*(n*(n-1)*(n-2)//6), -m

A000449_list.append(x) # Chai Wah Wu, Sep 23 2014

CROSSREFS

Cf. A000166, A000240, A000387, A000475, A008290, A129135.

A diagonal of A008291.

Cf. A170942.

Sequence in context: A060580 A118266 A054885 * A027274 A253674 A016082

Adjacent sequences: A000446 A000447 A000448 * A000450 A000451 A000452

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 03:48 EDT 2023. Contains 361577 sequences. (Running on oeis4.)