login
A060580
Number of homeomorphically irreducible general graphs on 5 labeled nodes and with n edges.
0
1, 10, 40, 185, 765, 2845, 10220, 33885, 105185, 305465, 830811, 2119875, 5091525, 11565505, 24977315, 51552005, 102175360, 195301015, 361365695, 649360880, 1136438375, 1941722170, 3245874555, 5318438260, 8555568895, 13531506921
OFFSET
0,2
COMMENTS
A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
FORMULA
G.f.: - (5*x^22 - 20*x^21 + 23*x^20 - 815*x^19 + 8110*x^18 - 37255*x^17 + 104890*x^16 - 204469*x^15 + 296720*x^14 - 337455*x^13 + 310150*x^12 - 229885*x^11 + 131054*x^10 - 50485*x^9 + 6490*x^8 + 7255*x^7 - 6730*x^6 + 3242*x^5 - 995*x^4 + 180*x^3 - 5*x^2 - 5*x + 1)/(x - 1)^15. E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp( - x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 03 2001
STATUS
approved