login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060580 Number of homeomorphically irreducible general graphs on 5 labeled nodes and with n edges. 0
1, 10, 40, 185, 765, 2845, 10220, 33885, 105185, 305465, 830811, 2119875, 5091525, 11565505, 24977315, 51552005, 102175360, 195301015, 361365695, 649360880, 1136438375, 1941722170, 3245874555, 5318438260, 8555568895, 13531506921 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.

REFERENCES

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

LINKS

Table of n, a(n) for n=0..25.

V. Jovovic, Generating functions for homeomorphically irreducible general graphs on n labeled nodes

V. Jovovic, Recurrences for the numbers of homeomorphically irreducible general graphs on m labeled nodes and n edges

FORMULA

G.f.: - (5*x^22 - 20*x^21 + 23*x^20 - 815*x^19 + 8110*x^18 - 37255*x^17 + 104890*x^16 - 204469*x^15 + 296720*x^14 - 337455*x^13 + 310150*x^12 - 229885*x^11 + 131054*x^10 - 50485*x^9 + 6490*x^8 + 7255*x^7 - 6730*x^6 + 3242*x^5 - 995*x^4 + 180*x^3 - 5*x^2 - 5*x + 1)/(x - 1)^15. E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp( - x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.

CROSSREFS

Cf. A003514, A060516, A060533-A060537, A060576-A060581.

Sequence in context: A279219 A002066 A061991 * A118266 A054885 A000449

Adjacent sequences:  A060577 A060578 A060579 * A060581 A060582 A060583

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Apr 03 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 09:22 EDT 2020. Contains 334717 sequences. (Running on oeis4.)