login
A003514
Number of series-reduced labeled graphs with n nodes.
(Formerly M1290)
18
1, 1, 2, 4, 15, 102, 4166, 402631, 76374899, 27231987762, 18177070202320, 22801993267433275, 54212469444212172845, 246812697326518127351384, 2173787304796735262709419350, 37373588848096468764431235680525, 1263513534110606141026676778422031561
OFFSET
0,3
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. M. Jackson and J. W. Reilly, The enumeration of homeomorphically irreducible labeled graphs, J. Combin. Theory, B 19 (1975), 272-286.
FORMULA
E.g.f.: (1 + x)^( - 1/2) * exp(x/2 - x^2/4) * Sum_{k=0..inf} (2 * exp( - x/(1 + x)))^binomial(k, 2) * (exp(x^2/2/(1 + x)))^k * x^k/k!. - Vladeta Jovovic, Mar 23 2001
MATHEMATICA
max = 15; f[x_] := (1 + x)^(-1/2)*Exp[x/2-x^2/4]*Sum[(2*Exp[-x/(1+x)])^Binomial[k, 2]*Exp[x^2/2/(1+x)]^k*x^k/k!, {k, 0, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x]*Range[0, max]!(* Jean-François Alcover, Nov 25 2011, after Vladeta Jovovic *)
PROG
(PARI) seq(n)={my(x='x+O('x^(n+1))); Vec(serlaplace((1 + x)^( - 1/2) * exp(x/2 - x^2/4) * sum(k=0, n, (2 * exp(-x/(1 + x)))^binomial(k, 2) * (exp(x^2/2/(1 + x)))^k * x^k/k!)))} \\ Andrew Howroyd, Feb 23 2024
CROSSREFS
Row sums of A060514 and A307806.
The unlabeled version is A005637.
Cf. A003515 (connected).
Sequence in context: A307085 A228934 A120490 * A065598 A264832 A100528
KEYWORD
nonn,nice
EXTENSIONS
More terms from Vladeta Jovovic, Mar 23 2001
STATUS
approved