login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228934
Optimal ascending continued fraction expansion of sqrt(44) - 6.
2
2, 4, 15, -99, -199, -800, -79201, -316808, -12545596801, -50182387208, -314783998186522867201, -1259135992746091468808, -198177931028585663493396958369763763148801, -792711724114342653973587833479055052595208
OFFSET
1,1
COMMENTS
See A228929 for the definition of "optimal ascending continued fraction".
This is the first number whose expansion exhibits (in the first 20 terms) a different recurrence relation from that described in A228931.
Conjecture: The terms of the expansion of sqrt(x) are all negative starting from a(4) and satisfy these recurrence relations for n>=3: a(2n) = 4*a(2n-1) - 4 and a(2n+1) = -2*a(2n-1)^2 + 1.
Numbers (in the range 1..1000) that exhibit this recurrence starting from some n are 44, 125, 154, 160, 176, 207, 208, 280, 352, 384, 459, 468, 500, 608, 616, 640, 665, 686, 704, 768, 800, 832, 864, 874, 875, 924.
LINKS
FORMULA
a(2n) = 4*a(2n-1) - 4 and a(2n+1) = -2*a(2n-1)^2 + 1 for n >= 3.
EXAMPLE
sqrt(44) = 6 + 1/2*(1 + 1/4*(1 + 1/15*(1 - 1/99*(1 - 1/199*(1 - 1/800*(1 - 1/79201*(1 - 1/316808*(1 - 1/12545596801*(1 - ...))))))))).
MAPLE
ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc
# List the first 20 terms of the expansion of sqrt(44)-6
ArticoExp(sqrt(44), 20)
MATHEMATICA
ArticoExp[x_, n_] := Round[1/#] & /@ NestList[Round[1/Abs[#]]*Abs[#] - 1 &, FractionalPart[x], n]; Block[{$MaxExtraPrecision = 50000}, ArticoExp[Sqrt[44] - 6, 20]] (* G. C. Greubel, Dec 26 2016 *)
CROSSREFS
KEYWORD
sign,cofr
AUTHOR
Giovanni Artico, Sep 11 2013
EXTENSIONS
Minor typos corrected by Giovanni Artico, Sep 24 2013
STATUS
approved