login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228937
Expansion of (1+2*x+30*x^2+13*x^3-13*x^5-30*x^6-2*x^7-x^8)/(1+2*x^4+x^8).
0
1, 2, 30, 13, -2, -17, -90, -28, 2, 32, 150, 43, -2, -47, -210, -58, 2, 62, 270, 73, -2, -77, -330, -88, 2, 92, 390, 103, -2, -107, -450, -118, 2, 122, 510, 133, -2, -137, -570, -148, 2, 152, 630, 163, -2, -167, -690, -178, 2, 182
OFFSET
0,2
COMMENTS
Optimal simple continued fraction (with signed denominators) of exp(2/5)
See A228935.
The convergents are a subset of those of the standard regular continued fraction; the sequence of the signs of the difference between the convergents and exp(2/5) starts with:
-1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1,...
For every couple of successive equal signs in this sequence there is a convergent of the standard expansion not present in this one.
Repeating the expansion for other numbers of type 2/k a common pattern seems to emerge. Examples:
exp(2/7) gives 1, 3, 42, 18, -2, -24, -126, -39, 2, 45, 210, 60, -2,...
exp(2/9) gives 1, 4, 54, 23, -2, -31, -162, -50, 2, 58, 270, 77, -2,...
so it seems that in general the terms for exp(2/k) are generated by the following formulas:
b(0)=1, b(1)=k/2-1/2, b(2)=6*k, b(3)=5*k/2+1/2, b(4)=-2, b(5)=7*k/2+1/2, b(6)=-18*k, b(7)=-11*k/2-1/2, b(8)=2; b(n) = -2*b(n-4) -b(n-8) for n>8, recurrence which corresponds to the g.f. 1/2*(1-x)*(1+x)*(2*(1+x^6)+(k-1)*(x+x^5)+(12*k+2)*(x^2+x^4)+6*k*x^3)/(1+x^4)^2; also:
b(0)=1 , b(4m+1)=(-1)^m*((k-1)/2+3*k*m), b(4m+3)=(-1)^m*((5*k+1)/2+3*k*m), b(4m+2)=(-1)^m*(6*k+12*k*m), b(4m+4)=(-1)^(m+1)*2 for n>=0.
These formulas give this expansion for exp(2/k):
exp(2/k)=1+1/((k-1)/2+1/(6k+1/((5k+1)/2+1/(-2+1/(-(7k-1)/2+1/...)))))
that can be rewritten in this equivalent form:
exp(2/k)=1+1/(k/2-1/2+1/(6k+1/(5k/2+1/2-1/(2+1/(7x/2-1/2+1/...))))).
This general expansion seems to be valid for any real value of k.
FORMULA
G.f.: (1+2*x+30*x^2+13*x^3-13*x^5-30*x^6-2*x^7-x^8)/(1+2*x^4+x^8).
a(0)=1, a(1)=2, a(2)=30, a(3)=13, a(4)=-2, a(5)=-17, a(6)=-90, a(7)=-28, a(8)=2; for n>8, a(n) = -2*a(n-4) -a(n-8).
a(0)=1 , a(4m+1) = (-1)^m*(2+15*m), a(4m+3) = (-1)^m*(13+15*m), a(4m+2) = (-1)^m*(30+60*m), a(4m+4) = 2*(-1)^(m+1) for m>=0.
EXAMPLE
exp(2/5)=1+1/(2+1/(30+1/(13+1/(-2+1/(-17+1/(-90+1/(-28+1/(2+...)))))))),
or equivalently:
exp(2/5)=1+1/(2+1/(30+1/(13-1/(2+1/(17+1/(90+1/(28-1/(2+...)))))))).
MAPLE
SCF := proc (n, q::posint)::list; local L, i, z; Digits := 10000; L := [round(n)]; z := n; for i from 2 to q do if z = op(-1, L) then break end if; z := 1/(z-op(-1, L)); L := [op(L), round(z)] end do; return L end proc
SCF(exp(2/5), 50)
MATHEMATICA
Join[{1}, LinearRecurrence[{0, 0, 0, -2, 0, 0, 0, -1}, {2, 30, 13, -2, -17, -90, -28, 2}, 50]] (* Bruno Berselli, Nov 06 2013 *)
CROSSREFS
KEYWORD
cofr,sign,easy
AUTHOR
Giovanni Artico, Oct 28 2013
STATUS
approved