The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228937 Expansion of (1+2*x+30*x^2+13*x^3-13*x^5-30*x^6-2*x^7-x^8)/(1+2*x^4+x^8). 0

%I #23 Jun 16 2016 23:27:54

%S 1,2,30,13,-2,-17,-90,-28,2,32,150,43,-2,-47,-210,-58,2,62,270,73,-2,

%T -77,-330,-88,2,92,390,103,-2,-107,-450,-118,2,122,510,133,-2,-137,

%U -570,-148,2,152,630,163,-2,-167,-690,-178,2,182

%N Expansion of (1+2*x+30*x^2+13*x^3-13*x^5-30*x^6-2*x^7-x^8)/(1+2*x^4+x^8).

%C Optimal simple continued fraction (with signed denominators) of exp(2/5)

%C See A228935.

%C The convergents are a subset of those of the standard regular continued fraction; the sequence of the signs of the difference between the convergents and exp(2/5) starts with:

%C -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1,...

%C For every couple of successive equal signs in this sequence there is a convergent of the standard expansion not present in this one.

%C Repeating the expansion for other numbers of type 2/k a common pattern seems to emerge. Examples:

%C exp(2/7) gives 1, 3, 42, 18, -2, -24, -126, -39, 2, 45, 210, 60, -2,...

%C exp(2/9) gives 1, 4, 54, 23, -2, -31, -162, -50, 2, 58, 270, 77, -2,...

%C so it seems that in general the terms for exp(2/k) are generated by the following formulas:

%C b(0)=1, b(1)=k/2-1/2, b(2)=6*k, b(3)=5*k/2+1/2, b(4)=-2, b(5)=7*k/2+1/2, b(6)=-18*k, b(7)=-11*k/2-1/2, b(8)=2; b(n) = -2*b(n-4) -b(n-8) for n>8, recurrence which corresponds to the g.f. 1/2*(1-x)*(1+x)*(2*(1+x^6)+(k-1)*(x+x^5)+(12*k+2)*(x^2+x^4)+6*k*x^3)/(1+x^4)^2; also:

%C b(0)=1 , b(4m+1)=(-1)^m*((k-1)/2+3*k*m), b(4m+3)=(-1)^m*((5*k+1)/2+3*k*m), b(4m+2)=(-1)^m*(6*k+12*k*m), b(4m+4)=(-1)^(m+1)*2 for n>=0.

%C These formulas give this expansion for exp(2/k):

%C exp(2/k)=1+1/((k-1)/2+1/(6k+1/((5k+1)/2+1/(-2+1/(-(7k-1)/2+1/...)))))

%C that can be rewritten in this equivalent form:

%C exp(2/k)=1+1/(k/2-1/2+1/(6k+1/(5k/2+1/2-1/(2+1/(7x/2-1/2+1/...))))).

%C This general expansion seems to be valid for any real value of k.

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,-2,0,0,0,-1).

%F G.f.: (1+2*x+30*x^2+13*x^3-13*x^5-30*x^6-2*x^7-x^8)/(1+2*x^4+x^8).

%F a(0)=1, a(1)=2, a(2)=30, a(3)=13, a(4)=-2, a(5)=-17, a(6)=-90, a(7)=-28, a(8)=2; for n>8, a(n) = -2*a(n-4) -a(n-8).

%F a(0)=1 , a(4m+1) = (-1)^m*(2+15*m), a(4m+3) = (-1)^m*(13+15*m), a(4m+2) = (-1)^m*(30+60*m), a(4m+4) = 2*(-1)^(m+1) for m>=0.

%e exp(2/5)=1+1/(2+1/(30+1/(13+1/(-2+1/(-17+1/(-90+1/(-28+1/(2+...)))))))),

%e or equivalently:

%e exp(2/5)=1+1/(2+1/(30+1/(13-1/(2+1/(17+1/(90+1/(28-1/(2+...)))))))).

%p SCF := proc (n, q::posint)::list; local L, i, z; Digits := 10000; L := [round(n)]; z := n; for i from 2 to q do if z = op(-1, L) then break end if; z := 1/(z-op(-1, L)); L := [op(L), round(z)] end do; return L end proc

%p SCF(exp(2/5), 50)

%t Join[{1}, LinearRecurrence[{0, 0, 0, -2, 0, 0, 0, -1}, {2, 30, 13, -2, -17, -90, -28, 2}, 50]] (* _Bruno Berselli_, Nov 06 2013 *)

%Y Cf. A133593, A133570, A228935, A228936.

%K cofr,sign,easy

%O 0,2

%A _Giovanni Artico_, Oct 28 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 00:08 EDT 2024. Contains 373206 sequences. (Running on oeis4.)