Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Dec 27 2016 02:36:00
%S 2,4,15,-99,-199,-800,-79201,-316808,-12545596801,-50182387208,
%T -314783998186522867201,-1259135992746091468808,
%U -198177931028585663493396958369763763148801,-792711724114342653973587833479055052595208
%N Optimal ascending continued fraction expansion of sqrt(44) - 6.
%C See A228929 for the definition of "optimal ascending continued fraction".
%C This is the first number whose expansion exhibits (in the first 20 terms) a different recurrence relation from that described in A228931.
%C Conjecture: The terms of the expansion of sqrt(x) are all negative starting from a(4) and satisfy these recurrence relations for n>=3: a(2n) = 4*a(2n-1) - 4 and a(2n+1) = -2*a(2n-1)^2 + 1.
%C Numbers (in the range 1..1000) that exhibit this recurrence starting from some n are 44, 125, 154, 160, 176, 207, 208, 280, 352, 384, 459, 468, 500, 608, 616, 640, 665, 686, 704, 768, 800, 832, 864, 874, 875, 924.
%H G. C. Greubel, <a href="/A228934/b228934.txt">Table of n, a(n) for n = 1..21</a>
%F a(2n) = 4*a(2n-1) - 4 and a(2n+1) = -2*a(2n-1)^2 + 1 for n >= 3.
%e sqrt(44) = 6 + 1/2*(1 + 1/4*(1 + 1/15*(1 - 1/99*(1 - 1/199*(1 - 1/800*(1 - 1/79201*(1 - 1/316808*(1 - 1/12545596801*(1 - ...))))))))).
%p ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc
%p # List the first 20 terms of the expansion of sqrt(44)-6
%p ArticoExp(sqrt(44),20)
%t ArticoExp[x_, n_] := Round[1/#] & /@ NestList[Round[1/Abs[#]]*Abs[#] - 1 &, FractionalPart[x], n]; Block[{$MaxExtraPrecision = 50000}, ArticoExp[Sqrt[44] - 6, 20]] (* _G. C. Greubel_, Dec 26 2016 *)
%Y Cf. A228929, A228931, A228932.
%K sign,cofr
%O 1,1
%A _Giovanni Artico_, Sep 11 2013
%E Minor typos corrected by _Giovanni Artico_, Sep 24 2013