login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060514
Triangle T(n,k) of series-reduced (or homeomorphically irreducible) labeled graphs with n nodes and k edges, k=0..binomial(n,2).
4
1, 1, 1, 1, 1, 3, 0, 0, 1, 6, 3, 4, 0, 0, 1, 1, 10, 15, 20, 5, 0, 5, 20, 15, 10, 1, 1, 15, 45, 75, 90, 96, 135, 315, 510, 760, 843, 765, 395, 105, 15, 1, 1, 21, 105, 245, 525, 777, 1302, 3045, 7455, 16275, 30135, 50190, 70805, 81690, 70605, 43239, 18774, 5880, 1330
OFFSET
0,6
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
LINKS
D. M. Jackson and J. W. Reilly, The enumeration of homeomorphically irreducible labeled graphs, J. Combin. Theory, B 19 (1975), 272-286.
FORMULA
E.g.f. : (1+x*y)^(-1/2)*exp(x*y/2-x^2*y^2/4)*Sum_{k=0..inf}((1+x)*exp(-x^2*y/(1+x*y)))^binomial(k, 2)*(exp(1/2*x^3*y^2/(1+x*y)))^k*x^k/k!
EXAMPLE
Triangle begins:
[1],
[1],
[1, 1],
[1, 3, 0, 0],
[1, 6, 3, 4, 0, 0, 1],
[1, 10, 15, 20, 5, 0, 5, 20, 15, 10, 1],
[1, 15, 45, 75, 90, 96, 135, 315, 510, 760, 843, 765, 395, 105, 15, 1],
[1, 21, 105, 245, 525, 777, 1302, 3045, 7455, 16275, 30135, 50190, 70805, 81690, 70605, 43239, 18774, 5880, 1330, 210, 21, 1],
...
CROSSREFS
Row sums: A003514.
For connected graphs see A331437, A331438.
Sequence in context: A202023 A080159 A144299 * A176788 A350450 A238129
KEYWORD
nonn,tabf
AUTHOR
Vladeta Jovovic, Mar 23 2001
STATUS
approved