login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) of series-reduced (or homeomorphically irreducible) labeled graphs with n nodes and k edges, k=0..binomial(n,2).
4

%I #11 Jan 23 2020 03:49:36

%S 1,1,1,1,1,3,0,0,1,6,3,4,0,0,1,1,10,15,20,5,0,5,20,15,10,1,1,15,45,75,

%T 90,96,135,315,510,760,843,765,395,105,15,1,1,21,105,245,525,777,1302,

%U 3045,7455,16275,30135,50190,70805,81690,70605,43239,18774,5880,1330

%N Triangle T(n,k) of series-reduced (or homeomorphically irreducible) labeled graphs with n nodes and k edges, k=0..binomial(n,2).

%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

%H D. M. Jackson and J. W. Reilly, <a href="https://doi.org/10.1016/0095-8956(75)90090-8">The enumeration of homeomorphically irreducible labeled graphs</a>, J. Combin. Theory, B 19 (1975), 272-286.

%F E.g.f. : (1+x*y)^(-1/2)*exp(x*y/2-x^2*y^2/4)*Sum_{k=0..inf}((1+x)*exp(-x^2*y/(1+x*y)))^binomial(k, 2)*(exp(1/2*x^3*y^2/(1+x*y)))^k*x^k/k!

%e Triangle begins:

%e [1],

%e [1],

%e [1, 1],

%e [1, 3, 0, 0],

%e [1, 6, 3, 4, 0, 0, 1],

%e [1, 10, 15, 20, 5, 0, 5, 20, 15, 10, 1],

%e [1, 15, 45, 75, 90, 96, 135, 315, 510, 760, 843, 765, 395, 105, 15, 1],

%e [1, 21, 105, 245, 525, 777, 1302, 3045, 7455, 16275, 30135, 50190, 70805, 81690, 70605, 43239, 18774, 5880, 1330, 210, 21, 1],

%e ...

%Y Row sums: A003514.

%Y For connected graphs see A331437, A331438.

%K nonn,tabf

%O 0,6

%A _Vladeta Jovovic_, Mar 23 2001