The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144299 Triangle of Bessel numbers read by rows. Row n gives T(n,n), T(n,n-1), T(n,n-2), ..., T(n,0) for n >= 0. 11
 1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 6, 3, 0, 0, 1, 10, 15, 0, 0, 0, 1, 15, 45, 15, 0, 0, 0, 1, 21, 105, 105, 0, 0, 0, 0, 1, 28, 210, 420, 105, 0, 0, 0, 0, 1, 36, 378, 1260, 945, 0, 0, 0, 0, 0, 1, 45, 630, 3150, 4725, 945, 0, 0, 0, 0, 0, 1, 55, 990, 6930, 17325, 10395, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS T(n,k) is the number of partitions of an n-set into k nonempty subsets, each of size at most 2. The Grosswald and Choi-Smith references give many further properties and formulas. Considered as an infinite lower triangular matrix T, lim_{n->infinity} T^n = A118930: (1, 1, 2, 4, 13, 41, 166, 652, ...) as a vector. - Gary W. Adamson, Dec 08 2008 REFERENCES E. Grosswald, Bessel Polynomials, Lecture Notes Math., Vol. 698, 1978. LINKS Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009. J. Y. Choi and J. D. H. Smith, On the unimodality and combinatorics of Bessel numbers, Discrete Math., 264 (2003), 45-53. Tom Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras Toufik Mansour, Matthias Schork, and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3. T. Mansour and M. Shattuck, Partial matchings and pattern avoidance, Appl. Anal. Discrete Math. 7 (2013) 25-50. FORMULA T(n, k) = T(n-1, k-1) + (n-1)*T(n-2, k-1). E.g.f.: Sum_{k >= 0} Sum_{n = 0..2k} T(n,k) y^k x^n/n! = exp(y(x+x^2/2)). (The coefficient of y^k is the e.g.f. for the k-th row of the rotated triangle shown below.) T(n, k) = n!/((n - 2*k)!*k!*2^k) for 0 <= k <= floor(n/2) and 0 otherwise. - Stefano Spezia, Jun 15 2023 From G. C. Greubel, Sep 29 2023: (Start) T(n, 1) = A000217(n-1). Sum_{k=0..n} T(n,k) = A000085(n). Sum_{k=0..n} (-1)^k*T(n,k) = A001464(n). (End) EXAMPLE Triangle begins: n: 0: 1 1: 1 0 2: 1 1 0 3: 1 3 0 0 4: 1 6 3 0 0 5: 1 10 15 0 0 0 6: 1 15 45 15 0 0 0 7: 1 21 105 105 0 0 0 0 8: 1 28 210 420 105 0 0 0 0 9: 1 36 378 1260 945 0 0 0 0 0 ... The row sums give A000085. For some purposes it is convenient to rotate the triangle by 45 degrees: 1 0 0 0 0 0 0 0 0 0 0 0 ... 1 1 0 0 0 0 0 0 0 0 0 ... 1 3 3 0 0 0 0 0 0 0 ... 1 6 15 15 0 0 0 0 0 ... 1 10 45 105 105 0 0 0 ... 1 15 105 420 945 945 0 ... 1 21 210 1260 4725 10395 ... 1 28 378 3150 17325 ... 1 36 630 6930 ... 1 45 990 ... ... The latter triangle is important enough that it has its own entry, A144331. Here the column sums give A000085 and the rows sums give A001515. If the entries in the rotated triangle are denoted by b1(n,k), n >= 0, k <= 2n, then we have the recurrence b1(n, k) = b1(n - 1, k - 1) + (k - 1)*b1(n - 1, k - 2). Then b1(n,k) is the number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1 or 2. MAPLE Maple code producing the rotated version: b1 := proc(n, k) option remember; if n = k then 1; elif k < n then 0; elif n < 1 then 0; else b1(n - 1, k - 1) + (k - 1)*b1(n - 1, k - 2); end if; end proc; for n from 0 to 12 do lprint([seq(b1(n, k), k=0..2*n)]); od: MATHEMATICA T[n_, 0]=0; T[1, 1]=1; T[2, 1]=1; T[n_, k_]:= T[n-1, k-1] + (n-1)T[n-2, k-1]; Table[T[n, k], {n, 12}, {k, n, 1, -1}]//Flatten (* Robert G. Wilson v *) Table[If[k<=Floor[n/2], n!/((n-2 k)! k! 2^k), 0], {n, 0, 12}, {k, 0, n}]//Flatten (* Stefano Spezia, Jun 15 2023 *) PROG (Haskell) a144299 n k = a144299_tabl !! n !! k a144299_row n = a144299_tabl !! n a144299_tabl = [1] : [1, 0] : f 1 [1] [1, 0] where f i us vs = ws : f (i + 1) vs ws where ws = (zipWith (+) (0 : map (i *) us) vs) ++ [0] -- Reinhard Zumkeller, Jan 01 2014 (Magma) A144299:= func< n, k | k le Floor(n/2) select Factorial(n)/(Factorial(n-2*k)*Factorial(k)*2^k) else 0 >; [A144299(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2023 (SageMath) def A144299(n, k): return factorial(n)/(factorial(n-2*k)*factorial(k)*2^k) if k <= (n//2) else 0 flatten([[A144299(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 29 2023 CROSSREFS Other versions of this same triangle are given in A111924 (which omits the first row), A001498 (which left-adjusts the rows in the bottom view), A001497 and A100861. Row sums give A000085. Cf. A000085, A000217, A001464, A004526, A118930, A144385, A144643.. Sequence in context: A211649 A202023 A080159 * A060514 A176788 A350450 Adjacent sequences: A144296 A144297 A144298 * A144300 A144301 A144302 KEYWORD nonn,tabl,easy AUTHOR David Applegate and N. J. A. Sloane, Dec 06 2008 EXTENSIONS Offset fixed by Reinhard Zumkeller, Jan 01 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 06:37 EDT 2024. Contains 375085 sequences. (Running on oeis4.)