The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144298 Number of cycles of length 3 in the queen's graph associated with an n X n chessboard. 5
 0, 0, 4, 36, 124, 320, 672, 1260, 2152, 3456, 5260, 7700, 10884, 14976, 20104, 26460, 34192, 43520, 54612, 67716, 83020, 100800, 121264, 144716, 171384, 201600, 235612, 273780, 316372, 363776, 416280, 474300, 538144, 608256, 684964, 768740, 859932 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Graph Cycle Eric Weisstein's World of Mathematics, Queen Graph Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1). FORMULA G.f.: 4*x^2*(1 + 6*x + 5*x^2 + x^3 - x^4) / ((1 - x)^5*(1 + x)^2). a(n) = A030117(n) + (3*n-1)*binomial(n,3). MATHEMATICA Table[n (5 - 10 n + 2 n^2 + 2 n^3 - (-1)^n)/4, {n, 20}] (* Eric W. Weisstein, Jun 19 2017 *) LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {0, 4, 36, 124, 320, 672, 1260}, 20] (* Eric W. Weisstein, Jun 19 2017 *) CoefficientList[Series[(4 x (-1 - 6 x - 5 x^2 - x^3 + x^4))/((-1 + x)^5 (1 + x)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 19 2017 *) PROG (PARI) concat(vector(2), Vec(4*x^2*(1 + 6*x + 5*x^2 + x^3 - x^4) / ((1 - x)^5*(1 + x)^2) + O(x^30))) \\ Colin Barker, May 11 2017 CROSSREFS Cf. A156001 (4-cycles), A288916 (5-cycles), A288917 (6-cycles). Sequence in context: A254939 A038688 A076830 * A072109 A045490 A318150 Adjacent sequences:  A144295 A144296 A144297 * A144299 A144300 A144301 KEYWORD nonn,easy AUTHOR Sergey Perepechko, Dec 04 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 09:03 EDT 2020. Contains 336201 sequences. (Running on oeis4.)