login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144297
BINOMIAL transform of A001515.
1
1, 3, 12, 65, 465, 4212, 46441, 604389, 9071250, 154267865, 2931801639, 61578273462, 1416474723373, 35415138314415, 956276678789100, 27733572777976973, 859779201497486829, 28373745267763162716, 993110842735800666085, 36746019445535955976665
OFFSET
0,2
LINKS
N. J. A. Sloane, Transforms
FORMULA
From Vaclav Kotesovec, Oct 20 2012: (Start)
E.g.f.: exp(1+x-sqrt(1-2*x))/sqrt(1-2*x).
Recurrence: a(n) = (2*n+1)*a(n-1) - (4*n-5)*a(n-2) + 2*(n-2)*a(n-3).
a(n) ~ 2^(n+1/2)*n^n/exp(n-3/2). (End)
a(n) = Sum_{j=0..n} binomial(n,j)*A001515(j). - G. C. Greubel, Sep 28 2023
MATHEMATICA
CoefficientList[Series[E^(1+x-Sqrt[1-2*x])/Sqrt[1-2*x], {x, 0, 20}], x]*Range[0, 20]! (* Vaclav Kotesovec, Oct 20 2012 *)
PROG
(Magma) I:=[1, 3, 12]; [n le 3 select I[n] else (2*n-1)*Self(n-1) -(4*n-9)*Self(n-2) +2*(n-3)*Self(n-3): n in [1..30]]; // G. C. Greubel, Sep 28 2023
(SageMath)
def A144297_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(1+x-sqrt(1-2*x))/sqrt(1-2*x) ).egf_to_ogf().list()
A144297_list(40) # G. C. Greubel, Sep 28 2023
CROSSREFS
Cf. A001515.
Sequence in context: A109577 A368265 A242575 * A007017 A183273 A082987
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 04 2008
STATUS
approved