OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
N. J. A. Sloane, Transforms
FORMULA
From Vaclav Kotesovec, Oct 20 2012: (Start)
E.g.f.: exp(1+x-sqrt(1-2*x))/sqrt(1-2*x).
Recurrence: a(n) = (2*n+1)*a(n-1) - (4*n-5)*a(n-2) + 2*(n-2)*a(n-3).
a(n) ~ 2^(n+1/2)*n^n/exp(n-3/2). (End)
a(n) = Sum_{j=0..n} binomial(n,j)*A001515(j). - G. C. Greubel, Sep 28 2023
MATHEMATICA
CoefficientList[Series[E^(1+x-Sqrt[1-2*x])/Sqrt[1-2*x], {x, 0, 20}], x]*Range[0, 20]! (* Vaclav Kotesovec, Oct 20 2012 *)
PROG
(Magma) I:=[1, 3, 12]; [n le 3 select I[n] else (2*n-1)*Self(n-1) -(4*n-9)*Self(n-2) +2*(n-3)*Self(n-3): n in [1..30]]; // G. C. Greubel, Sep 28 2023
(SageMath)
def A144297_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(1+x-sqrt(1-2*x))/sqrt(1-2*x) ).egf_to_ogf().list()
A144297_list(40) # G. C. Greubel, Sep 28 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 04 2008
STATUS
approved