login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144294
Let k = n-th nonsquare = A000037(n); then a(n) = smallest prime p such that k is not a square mod p.
9
3, 5, 3, 7, 5, 3, 7, 3, 5, 5, 3, 13, 3, 5, 7, 3, 11, 5, 3, 7, 3, 5, 5, 3, 11, 7, 3, 5, 7, 3, 5, 3, 11, 7, 3, 5, 5, 3, 7, 11, 3, 5, 3, 11, 5, 3, 7, 7, 3, 5, 5, 3, 13, 7, 3, 5, 3, 7, 5, 3, 7, 13, 3, 5, 5, 3, 7, 7, 3, 5, 11, 3, 5, 3, 11, 11, 3, 5, 5, 3, 7, 17, 3, 5, 7, 3, 7, 5, 3, 13
OFFSET
1,1
COMMENTS
In a posting to the Number Theory List, Oct 15 2008, Kurt Foster remarks that a positive integer M is a square iff M is a quadratic residue mod p for every prime p which does not divide M. He then asks how fast the present sequence grows.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MAPLE
with(numtheory); f:=proc(n) local M, i, j, k; M:=100000; for i from 2 to M do if legendre(n, ithprime(i)) = -1 then RETURN(ithprime(i)); fi; od; -1; end;
PROG
(PARI) a(n)=my(k=n+(sqrtint(4*n)+1)\2); forprime(p=2, , if(!issquare(Mod(k, p)), return(p))) \\ Charles R Greathouse IV, Aug 28 2016
(Python)
from math import isqrt
from sympy.ntheory import nextprime, legendre_symbol
def A144294(n):
k, p = n+(m:=isqrt(n))+(n>=m*(m+1)+1), 2
while (p:=nextprime(p)):
if legendre_symbol(k, p)==-1:
return p # Chai Wah Wu, Oct 20 2024
CROSSREFS
For records see A144295, A144296. See A092419 for another version.
Sequence in context: A075572 A089992 A074593 * A255313 A305883 A154800
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 03 2008
STATUS
approved