login
A000037
Numbers that are not squares (or, the nonsquares).
(Formerly M0613 N0223)
170
2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
OFFSET
1,1
COMMENTS
Note the remarkable formula for the n-th term (see the FORMULA section)!
These are the natural numbers with an even number of divisors. The number of divisors is odd for the complementary sequence, the squares (sequence A000290) and the numbers for which the number of divisors is divisible by 3 is sequence A059269. - Ola Veshta (olaveshta(AT)my-deja.com), Apr 04 2001
a(n) is the largest integer m not equal to n such that n = (floor(n^2/m) + m)/2. - Alexander R. Povolotsky, Feb 10 2008
Union of A007969 and A007970; A007968(a(n)) > 0. - Reinhard Zumkeller, Jun 18 2011
Terms of even numbered rows in the triangle A199332. - Reinhard Zumkeller, Nov 23 2011
If a(n) and a(n+1) are of the same parity then (a(n)+a(n+1))/2 is a square. - Zak Seidov, Aug 13 2012
Theaetetus of Athens proved the irrationality of the square roots of these numbers in the 4th century BC. - Charles R Greathouse IV, Apr 18 2013
4*a(n) are the even members of A079896, the discriminants of indefinite binary quadratic forms. - Wolfdieter Lang, Jun 14 2013
REFERENCES
Titu Andreescu, Dorin Andrica, and Zuming Feng, 104 Number Theory Problems, Birkhäuser, 2006, 58-60.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 9900 terms from N. J. A. Sloane)
E. R. Berlekamp, A contribution to mathematical psychometrics, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy]
A. J. dos Reis and D. M. Silberger, Generating nonpowers by formula, Math. Mag., 63 (1990), 53-55.
Bakir Farhi, An explicit formula generating the non-Fibonacci numbers, arXiv:1105.1127 [math.NT], May 05 2011.
S. R. Finch, Class number theory
Steven R. Finch, Class number theory [Cached copy, with permission of the author]
S. Kaji, T. Maeno, K. Nuida, and Y. Numata, Polynomial Expressions of Carries in p-ary Arithmetics, arXiv preprint arXiv:1506.02742 [math.CO], 2015-2016.
J. Lambek and L. Moser, Inverse and complementary sequences of natural numbers, Amer. Math. Monthly, 61 (1954), 454-458. doi 10.2307/2308078, see example 4 (includes the formula). [Nicolas Normand (Nicolas.Normand(AT)polytech.univ-nantes.fr), Nov 24 2009]
R. P. Loh, A. G. Shannon, and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
Cristinel Mortici, Remarks on Complementary Sequences, Fibonacci Quart. 48 (2010), no. 4, 343-347.
R. D. Nelson, Sequences which omit powers, The Mathematical Gazette, Number 461, 1988, pages 208-211.
M. A. Nyblom, Some curious sequences involving floor and ceiling functions, Am. Math. Monthly 109 (#6, 2002), 559-564.
Aaron Snook, Augmented Integer Linear Recurrences, 2012. - From N. J. A. Sloane, Dec 19 2012
Eric Weisstein's World of Mathematics, Square Number
Eric Weisstein's World of Mathematics, Continued Fraction
FORMULA
a(n) = n + floor(1/2 + sqrt(n)).
a(n) = n + floor(sqrt( n + floor(sqrt n))).
A010052(a(n)) = 0. - Reinhard Zumkeller, Jan 26 2010
A173517(a(n)) = n; a(n)^2 = A030140(n). - Reinhard Zumkeller, Feb 20 2010
a(n) = A000194(n) + n = floor(1/2 *(1 + sqrt(4*n-3))) + n. - Jaroslav Krizek, Jun 14 2009
a(n) = A000194(n) + n.
EXAMPLE
For example note that the squares 0, 1, 4, 9, 16 are not included.
a(A002061(n)) = a(n^2-n+1) = A002522(n) = n^2 + 1. A002061(n) = central polygonal numbers (n^2-n+1). A002522(n) = numbers of the form n^2 + 1. - Jaroslav Krizek, Jun 21 2009
MAPLE
A000037 := n->n+floor(1/2+sqrt(n));
MATHEMATICA
a[n_] := (n + Floor[Sqrt[n + Floor[Sqrt[n]]]]); Table[a[n], {n, 71}] (* Robert G. Wilson v, Sep 24 2004 *)
With[{upto=100}, Complement[Range[upto], Range[Floor[Sqrt[upto]]]^2]] (* Harvey P. Dale, Dec 02 2011 *)
a[ n_] := If[ n < 0, 0, n + Round @ Sqrt @ n]; (* Michael Somos, May 28 2014 *)
PROG
(Magma) [n : n in [1..1000] | not IsSquare(n) ];
(Magma) at:=0; for n in [1..10000] do if not IsSquare(n) then at:=at+1; print at, n; end if; end for;
(PARI) {a(n) = if( n<0, 0, n + (1 + sqrtint(4*n)) \ 2)};
(Haskell)
a000037 n = n + a000196 (n + a000196 n)
-- Reinhard Zumkeller, Nov 23 2011
(Maxima) A000037(n):=n + floor(1/2 + sqrt(n))$ makelist(A000037(n), n, 1, 50); /* Martin Ettl, Nov 15 2012 */
(Python)
from math import isqrt
def A000037(n): return n+isqrt(n+isqrt(n)) # Chai Wah Wu, Mar 31 2022
(Python)
from math import isqrt
def A000037(n): return n+(k:=isqrt(n))+int(n>=k*(k+1)+1) # Chai Wah Wu, Jun 17 2024
CROSSREFS
Cf. A242401 (subsequence).
Cf. A086849 (partial sums), A048395.
Sequence in context: A046841 A244218 A164514 * A028761 A028809 A337533
KEYWORD
easy,nonn,nice
EXTENSIONS
Edited by Charles R Greathouse IV, Oct 30 2009
STATUS
approved