OFFSET
1,2
COMMENTS
An approximation of the Euler-Mascheroni constant by rational numbers: the sum ((-1)^(n+1) * Sum_{k=1..n} (1/T(n,k))) converges to gamma, cf. Pólya-Szegő reference.
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 1, sec. 2, Problem 19.2., page 51.
LINKS
Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened
Eric Weisstein's World of Mathematics, Euler-Mascheroni Constant
Wikipedia, Euler-Mascheroni constant
EXAMPLE
1: 1 1
2: 2 3 2 .. 3
3: 4 4 4 4
4: 5 6 7 8 5 .. 8
5: 9 9 9 9 9 9
6: 10 11 12 13 14 15 10 .. 15
7: 16 16 16 16 16 16 16 16
8: 17 18 19 20 21 22 23 24 17 .. 24
9: 25 25 25 25 25 25 25 25 25 25 .
MATHEMATICA
t[n_, k_] := If[OddQ[n], (n+1)^2/4, n^2/4 + k]; Flatten[ Table[ t[n, k], {n, 1, 12}, {k, 1, n}]](* Jean-François Alcover, Dec 05 2011 *)
Flatten[Table[If[IntegerQ[Sqrt[n]], Table[n, {2*Sqrt[n]-1}], n], {n, 40}]] (* Harvey P. Dale, Nov 11 2013 *)
PROG
(Haskell)
a199332 n k = a199332_tabl !! (n-1) !! (k-1)
a199332_row n = a199332_tabl !! (n-1)
a199332_list = concat a199332_tabl
a199332_tabl = f [1..] [1..] where
f (x:xs) ys'@(y:ys) | odd x = (replicate x y) : f xs ys
| even x = us : f xs vs
where (us, vs) = splitAt x ys'
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Nov 23 2011
STATUS
approved