OFFSET
0,3
COMMENTS
A Chebyshev transform of A000975.
The denominator in the g.f. is 1 - 2*x + 2*x^2 - 2*x^3 + 2*x^4 - 2*x^5 + x^6, a version of the Jones polynomial of the knot 9_43.
The g.f. is the image of x/((1-x)*(1-x-2x^2)) under the Chebyshev transform A(x)->(1/(1+x^2))*A(x/(1+x^2)).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-1).
FORMULA
G.f.: x*(1+x^2)/((1-x+x^2)*(1-x-x^3+x^4)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6).
a(n) = -cos(Pi*2n/3 + Pi/3)/6 - sqrt(3)*sin(Pi*2n/3 + Pi/3)/18 - sqrt(3)*cos(Pi*n/3 + Pi/6)/6 - sin(Pi*n/3 + Pi/6)/2 + 2(n+1)/3.
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*(4*2^(n-1-2k)/3 - (-1)^n/6 - 1/2).
a(n) = floor((n+2)/3) + floor((n+3)/6) + floor((n+4)/6). - Ridouane Oudra, Jan 22 2024
MATHEMATICA
CoefficientList[Series[x (1 + x^2)/((1 - x + x^2) (1 - x - x^3 + x^4)), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 25 2013 *)
LinearRecurrence[{2, -2, 2, -2, 2, -1}, {0, 1, 2, 3, 4, 4}, 80] (* Harvey P. Dale, Dec 11 2014 *)
PROG
(Magma) I:=[0, 1, 2, 3, 4, 4]; [n le 6 select I[n] else 2*Self(n-1)-2*Self(n-2)+2*Self(n-3)-2*Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..100]]; // Vincenzo Librandi, Sep 25 2013
(PARI) x='x+O('x^50); concat([0], vec(x*(1+x^2)/((1-x+x^2)*(1-x-x^3+x^4)))) \\ G. C. Greubel, Oct 10 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 18 2004
STATUS
approved