login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099479
Count, repeating 4n three times for n > 0.
4
0, 1, 2, 3, 4, 4, 4, 5, 6, 7, 8, 8, 8, 9, 10, 11, 12, 12, 12, 13, 14, 15, 16, 16, 16, 17, 18, 19, 20, 20, 20, 21, 22, 23, 24, 24, 24, 25, 26, 27, 28, 28, 28, 29, 30, 31, 32, 32, 32, 33, 34, 35, 36, 36, 36, 37, 38, 39, 40, 40, 40, 41, 42, 43, 44, 44, 44, 45, 46, 47, 48, 48, 48, 49
OFFSET
0,3
COMMENTS
A Chebyshev transform of A000975.
The denominator in the g.f. is 1 - 2*x + 2*x^2 - 2*x^3 + 2*x^4 - 2*x^5 + x^6, a version of the Jones polynomial of the knot 9_43.
The g.f. is the image of x/((1-x)*(1-x-2x^2)) under the Chebyshev transform A(x)->(1/(1+x^2))*A(x/(1+x^2)).
FORMULA
G.f.: x*(1+x^2)/((1-x+x^2)*(1-x-x^3+x^4)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6).
a(n) = -cos(Pi*2n/3 + Pi/3)/6 - sqrt(3)*sin(Pi*2n/3 + Pi/3)/18 - sqrt(3)*cos(Pi*n/3 + Pi/6)/6 - sin(Pi*n/3 + Pi/6)/2 + 2(n+1)/3.
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*(4*2^(n-1-2k)/3 - (-1)^n/6 - 1/2).
a(n) = floor((n+2)/3) + floor((n+3)/6) + floor((n+4)/6). - Ridouane Oudra, Jan 22 2024
MATHEMATICA
CoefficientList[Series[x (1 + x^2)/((1 - x + x^2) (1 - x - x^3 + x^4)), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 25 2013 *)
LinearRecurrence[{2, -2, 2, -2, 2, -1}, {0, 1, 2, 3, 4, 4}, 80] (* Harvey P. Dale, Dec 11 2014 *)
PROG
(Magma) I:=[0, 1, 2, 3, 4, 4]; [n le 6 select I[n] else 2*Self(n-1)-2*Self(n-2)+2*Self(n-3)-2*Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..100]]; // Vincenzo Librandi, Sep 25 2013
(PARI) x='x+O('x^50); concat([0], vec(x*(1+x^2)/((1-x+x^2)*(1-x-x^3+x^4)))) \\ G. C. Greubel, Oct 10 2017
CROSSREFS
Cf. A099480.
Sequence in context: A135414 A326821 A356992 * A120508 A199332 A029085
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 18 2004
STATUS
approved