login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199333
Triangle read by rows: T(n,0) = T(n,n) = 1, 0 < k < n: T(n,k) = smallest prime not less than T(n-1,k) + T(n-1,k-1).
9
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 7, 5, 1, 1, 7, 13, 13, 7, 1, 1, 11, 23, 29, 23, 11, 1, 1, 13, 37, 53, 53, 37, 13, 1, 1, 17, 53, 97, 107, 97, 53, 17, 1, 1, 19, 71, 151, 211, 211, 151, 71, 19, 1, 1, 23, 97, 223, 367, 431, 367, 223, 97, 23, 1, 1, 29, 127
OFFSET
0,5
COMMENTS
T(n,k) = T(n,n-k);
T(n,0) = 1, cf. A000012;
T(n,1) = A008578(n), n > 0;
A199424(n) = first row in triangle A199302 containing n-th prime;
A199425(n) = number of distinct primes in rows 0 through n;
large terms in the b-file are probable primes only, row number > 50.
FORMULA
T(n,k) = A007918(T(n-1,k) + T(n-1,k-1)), 0 < k < n, T(n,0) = T(n,n) = 1.
EXAMPLE
0: 1
1: 1 1
2: 1 2 1
3: 1 3 3 1
4: 1 5 7 5 1
5: 1 7 13 13 7 1
6: 1 11 23 29 23 11 1
7: 1 13 37 53 53 37 13 1
8: 1 17 53 97 107 97 53 17 1
primes in 8th row:
T(7,0) + T(7,1) = 1+13 = 14 --> T(8,1) = T(8,7) = 19;
T(7,1) + T(7,2) = 13+37 = 50 --> T(8,2) = T(8,6) = 53, already in row 7;
T(7,2) + T(7,3) = 37+53 = 90 --> T(8,3) = T(8,5) = 97;
T(7,3) + T(7,4) = 53+53 = 106 --> T(8,4) = 107.
MATHEMATICA
T[n_, k_] := T[n, k] = Switch[k, 0|n, 1, _, With[{m = T[n-1, k] + T[n-1, k-1]}, If[PrimeQ[m], m, NextPrime[m]]]];
Table[T[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2021 *)
PROG
(Haskell)
a199333 n k = a199333_tabl !! n !! k
a199333_row n = a199333_tabl !! n
a199333_list = concat a199333_tabl
a199333_tabl = iterate
(\row -> map a159477 $ zipWith (+) ([0] ++ row) (row ++ [0])) [1]
CROSSREFS
Cf. A159477; A199581 & A199582 (central terms), A199694 (row sums), A199695 & A199696 (row products); A007318.
Sequence in context: A292193 A258708 A113983 * A089980 A181031 A214987
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Nov 09 2011
STATUS
approved