OFFSET
1,2
COMMENTS
When are both n+1 and 15*n+1 perfect squares? This problem gives the equation 15*x^2-14 = y^2.
Values of x (or y) in the solutions to x^2 - 8xy + y^2 + 14 = 0. - Colin Barker, Feb 05 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..250
Index entries for linear recurrences with constant coefficients, signature (0,8,0,-1).
FORMULA
a(n+4) = 8*a(n+2) - a(n), a(1)=1, a(2)=3, a(3)=5, a(4)=23.
G.f.: x*(1-x)*(1+4*x+x^2)/(1-8*x^2+x^4). - Bruno Berselli, Nov 08 2011
MATHEMATICA
LinearRecurrence[{0, 8, 0, -1}, {1, 3, 5, 23}, 50] (* T. D. Noe, Nov 07 2011 *)
PROG
(Magma) m:=29; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)*(1+4*x+x^2)/(1-8*x^2+x^4))); // Bruno Berselli, Nov 08 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sture Sjöstedt, Nov 05 2011
EXTENSIONS
More terms from T. D. Noe, Nov 07 2011
STATUS
approved