login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199336
x-values in the solution to 15*x^2 - 14 = y^2.
5
1, 3, 5, 23, 39, 181, 307, 1425, 2417, 11219, 19029, 88327, 149815, 695397, 1179491, 5474849, 9286113, 43103395, 73109413, 339352311, 575589191, 2671715093, 4531604115, 21034368433, 35677243729, 165603232371, 280886345717, 1303791490535, 2211413522007
OFFSET
1,2
COMMENTS
When are both n+1 and 15*n+1 perfect squares? This problem gives the equation 15*x^2-14 = y^2.
Values of x (or y) in the solutions to x^2 - 8xy + y^2 + 14 = 0. - Colin Barker, Feb 05 2014
FORMULA
a(n+4) = 8*a(n+2) - a(n), a(1)=1, a(2)=3, a(3)=5, a(4)=23.
G.f.: x*(1-x)*(1+4*x+x^2)/(1-8*x^2+x^4). - Bruno Berselli, Nov 08 2011
MATHEMATICA
LinearRecurrence[{0, 8, 0, -1}, {1, 3, 5, 23}, 50] (* T. D. Noe, Nov 07 2011 *)
PROG
(Magma) m:=29; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)*(1+4*x+x^2)/(1-8*x^2+x^4))); // Bruno Berselli, Nov 08 2011
CROSSREFS
Essentially the second differences of A237262. Cf. also A322780.
Sequence in context: A296927 A215132 A091157 * A214876 A280273 A036952
KEYWORD
nonn,easy
AUTHOR
Sture Sjöstedt, Nov 05 2011
EXTENSIONS
More terms from T. D. Noe, Nov 07 2011
STATUS
approved