login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198947
x values in the solution to 11*x^2 - 10 = y^2.
6
1, 7, 13, 139, 259, 2773, 5167, 55321, 103081, 1103647, 2056453, 22017619, 41025979, 439248733, 818463127, 8762957041, 16328236561, 174819892087, 325746268093, 3487634884699, 6498597125299, 69577877801893, 129646196237887, 1388069921153161, 2586425327632441
OFFSET
1,2
COMMENTS
When are n and 11*n+1 perfect squares? This problem gives rise to the Diophantine equation 11*x^2 - 10 = y^2.
Positive values of x (or y) satisfying x^2 - 20xy + y^2 + 90 = 0. - Colin Barker, Feb 18 2014
FORMULA
a(n+4) = 20*a(n+2) - a(n) with a(1)=1, a(2)=7, a(3)=13, a(4)=139.
From Bruno Berselli, Nov 06 2011: (Start)
G.f.: x*(1-x)*(1+8*x+x^2)/(1-20*x^2+x^4).
a(n) = ((11+(-1)^n*t)*(10-3*t)^floor(n/2)+(11-(-1)^n*t)*(10+3*t)^floor(n/2))/22 with t=sqrt(11). (End).
MATHEMATICA
LinearRecurrence[{0, 20, 0, -1}, {1, 7, 13, 139}, 30] (* Vincenzo Librandi, Feb 06 2012 *)
PROG
(PARI) v=vector(25); v[1]=1; v[2]=7; v[3]=13; v[4]=139; for(i=5, #v, v[i]=20*v[i-2]-v[i-4]); v \\ Bruno Berselli, Nov 07 2011
(Magma) m:=26; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-x)*(1+8*x+x^2)/(1-20*x^2+x^4))); // Bruno Berselli, Nov 07 2011
(Maxima) makelist(expand(((11+(-1)^n*sqrt(11))*(10-3*sqrt(11))^floor(n/2)+(11-(-1)^n*sqrt(11))*(10+3*sqrt(11))^floor(n/2))/22), n, 1, 25); /* Bruno Berselli, Nov 07 2011 */
CROSSREFS
Sequence in context: A367597 A241280 A219703 * A342717 A050946 A178956
KEYWORD
nonn,easy
AUTHOR
Sture Sjöstedt, Oct 31 2011
EXTENSIONS
Terms a(1)-a(7) confirmed, a(8)-a(15) added by John W. Layman, Nov 04 2011
a(16)-a(25) from Bruno Berselli, Nov 06 2011
STATUS
approved