The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050946 "Stirling-Bernoulli transform" of Fibonacci numbers. 7
 0, 1, 1, 7, 13, 151, 421, 6847, 25453, 532231, 2473141, 63206287, 352444093, 10645162711, 69251478661, 2413453999327, 17943523153933, 708721089607591, 5927841361456981, 261679010699505967, 2431910546406522973, 118654880542567722871, 1212989379862721528101 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS From Paul Curtz, Oct 11 2013: (Start) Differences table:      0,    1,    1,    7,   13,  151,  421, 6847, ...      1,    0,    6,    6,  138,  270, 6426, ...     -1,    6,    0,  132,  132, 6156, ...      7,   -6,  132,    0, 6024, ...    -13,  138, -132, 6024, ...    151, -270, 6156, ...   -421, 6426, ...   6847, ... . a(n) is an autosequence of first kind: the inverse binomial transform is the sequence signed, the main diagonal is A000004=0's. The "Stirling-Bernoulli transform" applied to an autosequence of first kind is an autosequence of first kind. Now consider the Akiyama-Tanigawa transform or algorithm applied to A000045(n):      0,   1,   1,   2,   3,   5, 8, ...     -1,   0,  -3,  -4, -10, -18, ...    = -A006490     -1,   6,   3,  24,  40, ...     -7,   6, -63, -64, ...    -13, 138,   3, ...   -151, 270, ...   -421, ... . Hence -a(n). The Akiyama-Tanigawa algorithm applied to an autosequence of first kind is an autosequence of first kind. a(n+5) - a(n+1) = 150, 420, 6840, ... is divisible by 30. For an autosequence of the second kind, the inverse binomial transform is the sequence signed with the main diagonal double of the first upper diagonal. The Akiyama-Tanigawa algorithm applied to an autosequence leads to an autosequence of the same kind. Example: the A-T algorithm applied to the autosequence of second kind 1/n leads to the autosequence of the second kind A164555(n)/A027642(n). Note that a2(n) = 2*a1(n+1) - a1(n) applied to the autosequence of the first kind a1(n) is a corresponding autosequence of the second kind. (End) LINKS Alois P. Heinz, Table of n, a(n) for n = 0..447 C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7 FORMULA O.g.f.: Sum_{n>=1} Fibonacci(n) * n! * x^n / Product_{k=1..n} (1+k*x). - Paul D. Hanna, Jul 20 2011 A100872(n)=a(2*n) and A100868(n)=a(2*n-1). From Paul Barry, Apr 20 2005: (Start) E.g.f.: exp(x)*(1-exp(x))/(1-3*exp(x)+exp((2*x))). a(n) = Sum_{k=0..n} (-1)^(n-k)*S2(n, k)*k!*Fibonacci(k). [corrected by Ilya Gutkovskiy, Apr 04 2019] (End) a(n) ~ c * n! / (log((3+sqrt(5))/2))^(n+1), where c = 1/sqrt(5) if n is even and c = 1 if n is odd. - Vaclav Kotesovec, Aug 13 2013 a(n) = -1 * Sum_{k = 0..n} A163626(n,k)*A000045(k). - Philippe Deléham, May 29 2015 MAPLE with(combinat): a:= n-> add((-1)^(k+1) *k! *stirling2(n+1, k+1)*fibonacci(k), k=0..n): seq(a(n), n=0..30);  # Alois P. Heinz, May 17 2013 MATHEMATICA CoefficientList[Series[E^x*(1-E^x)/(1-3*E^x+E^(2*x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Aug 13 2013 *) t[0, k_] := Fibonacci[k]; t[n_, k_] := t[n, k] = (k+1)*(t[n-1, k] - t[n-1, k+1]); a[n_] := t[n, 0] // Abs; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Oct 22 2013, after Paul Curtz *) PROG (PARI) {a(n)=polcoeff(sum(m=0, n, fibonacci(m)*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */ CROSSREFS Cf. A000045, A051782, A105796, A163626. Sequence in context: A241280 A219703 A198947 * A178956 A319612 A247946 Adjacent sequences:  A050943 A050944 A050945 * A050947 A050948 A050949 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 02 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 22:47 EST 2020. Contains 331129 sequences. (Running on oeis4.)