login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198946 G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^n * A(x)^k] * x^n/n ). 1
1, 2, 7, 43, 661, 45503, 14835966, 19030289368, 96523753164218, 1826134533496656481, 136782939777235335759015, 38134547664565961218637677016, 42464787999263932204904982967955033, 176203582974534986934299369142808689004350 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..13.

EXAMPLE

G.f.: A(x) = 1 + 2*x + 7*x^2 + 43*x^3 + 661*x^4 + 45503*x^5 +...

where

log(A(x)) = (1 + A(x))*x + (1 + 2^2*A(x) + A(x)^2)*x^2/2 +

(1 + 3^3*A(x) + 3^3*A(x)^2 + A(x)^3)*x^3/3 +

(1 + 4^4*A(x) + 6^4*A(x)^2 + 4^4*A(x)^3 + A(x)^4)*x^4/4 +

(1 + 5^5*A(x) + 10^5*A(x)^2 + 10^5*A(x)^3 + 5^5*A(x)^4 + A(x)^5)*x^5/5 +...

more explicitly,

log(A(x)) = 2*x + 10*x^2/2 + 95*x^3/3 + 2298*x^4/4 + 220502*x^5/5 + 88457005*x^6/6 +...

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^m*(A+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}

CROSSREFS

Cf. A198945.

Sequence in context: A228230 A340335 A011835 * A212270 A270348 A270580

Adjacent sequences:  A198943 A198944 A198945 * A198947 A198948 A198949

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 31 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 14:40 EST 2021. Contains 341609 sequences. (Running on oeis4.)