login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270348
Denominators of r-Egyptian fraction expansion for sqrt(1/3), where r = (1,1/2,1/4,1/8,...)
1
2, 7, 43, 1161, 796510, 1101781866330, 648667164391834988511313, 521313118065995695198529265268104396429334449023, 177042477384698216444912803612486097958997328262217304760270340328784709181787835108737458616981
OFFSET
1,1
COMMENTS
Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.
EXAMPLE
sqrt(1/3) = 1/2 + 1/(2*7) + 1/(4*43) + ...
MATHEMATICA
r[k_] := 2/2^k; f[x_, 0] = x; z = 10;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
x = Sqrt[1/3]; Table[n[x, k], {k, 1, z}]
PROG
(PARI) r(k) = 2/2^k;
f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); );
a(k, x=sqrt(1/3)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016
CROSSREFS
Cf. A269993.
Sequence in context: A011835 A198946 A212270 * A270580 A103084 A041507
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Mar 17 2016
STATUS
approved