login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270351 Denominators of r-Egyptian fraction expansion for golden ratio - 1, where r = (1, 1/2, 1/4, 1/8, ...) 1
2, 5, 14, 707, 1470654, 1143462781221, 1805535113251940020114035, 2497859054491311040375647235065337168455108737151, 3189945744303964831068292153370103839290925070278698110007359838830245675325591867634500100743606 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1).  Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k).  Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.

See A269993 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..11

Eric Weisstein's World of Mathematics, Egyptian Fraction

Index entries for sequences related to Egyptian fractions

EXAMPLE

tau - 1 = 1/2 + 1/(2*5) + 1/(4*14) + ...

MATHEMATICA

r[k_] := 2/2^k; f[x_, 0] = x; z = 10;

n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]

f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]

x = GoldenRatio; Table[n[x, k], {k, 1, z}]

PROG

(PARI) r(k) = 2/2^k;

f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); );

a(k, x=(sqrt(5)-1)/2) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016

CROSSREFS

Cf. A269993.

Sequence in context: A118478 A179675 A193314 * A240435 A146116 A146107

Adjacent sequences:  A270348 A270349 A270350 * A270352 A270353 A270354

KEYWORD

nonn,frac,easy

AUTHOR

Clark Kimberling, Mar 17 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 8 11:10 EST 2021. Contains 341948 sequences. (Running on oeis4.)