|
|
A240435
|
|
Catalan numbers whose sum of digits is a prime.
|
|
1
|
|
|
2, 5, 14, 16796, 208012, 18367353072152, 14544636039226909, 3116285494907301262, 45950804324621742364, 176733862787006701400, 270557451039395118028642463289168566420671280440, 3935312233584004685417853572763349509774031680023800
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The n-th Catalan number Catalan(n) = (2*n)!/(n!*(n+1)!).
The 40th term in the sequence, a(40), has 651 digits.
a(41), a(42), and a(43), which are not included in the b-file, have 1313, 1313, and 1317 digits, respectively.
|
|
LINKS
|
K. D. Bajpai, Table of n, a(n) for n = 1..40
|
|
EXAMPLE
|
16796 is in sequence because Catalan(10) = (2*10)!/(10!*(10+1)!) = 16796: The digital sum(16796) = 29 which is prime.
208012 is in sequence because Catalan(12) = (2*12)!/(12!*(12+1)!) = 208012: The digital sum(208012) = 13 which is prime.
|
|
MAPLE
|
KD := proc() local a, b; a:=(2*n)!/(n!*(n+1)!); b:=add( i, i = convert((a), base, 10))(a); if isprime(b) then RETURN (a); fi; end: seq(KD(), n=1..200);
|
|
MATHEMATICA
|
Select[CatalanNumber[Range[100]], PrimeQ[Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Jul 19 2019 *)
|
|
CROSSREFS
|
Cf. A000108, A230061, A231885.
Sequence in context: A179675 A193314 A270351 * A146116 A146107 A146115
Adjacent sequences: A240432 A240433 A240434 * A240436 A240437 A240438
|
|
KEYWORD
|
nonn,less,base
|
|
AUTHOR
|
K. D. Bajpai, Apr 05 2014
|
|
STATUS
|
approved
|
|
|
|