login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193314 The smallest k such that the product k*(k+1) is divisible by the first n primes and no others. 2
1, 2, 5, 14, 384, 1715, 714, 633555 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(9)-a(21) do not exist.  It seems unlikely that a(n) exists for larger n. [Charles R Greathouse IV, Aug 18 2011]

If a term beyond a(8) exists, it is larger than 2.29*10^25. - Giovanni Resta, Nov 30 2019

LINKS

Table of n, a(n) for n=1..8.

Carlos Rivera, The prime puzzles & problems connection, Puzzle 358. Ruth-Aaron pairs revisited.

EXAMPLE

n  smallest k   k*(k+1) prime factorization

1  1            2

2  2            2*3

3  5            2*3*5

4  14           2*3*5*7

5  384          2^7*3*5*7*11

6  1715         2^2*3*7^3*11*13

7  714          2*3*5*7*11*13*17

8  633555       2^2*3^3*5*7*11^3*13*17*19^2

MATHEMATICA

f[n_] := Block[{k = 1, p = Fold[ Times, 1, Prime@ Range@ n], tst = Prime@ Range@ n}, While[ First@ Transpose@ FactorInteger[ k*p]!=tst || IntegerQ@ Sqrt[ 4k*p+1], k++]; Floor@ Sqrt[k*p]]; Array[f, 8]

(* the search for a(9), I also used *) lst = {}; p = Prime@ Range@ 9; Do[ q = {a, b, c, d, e, f, g, h, i}; If[ IntegerQ[ Sqrt[4Times @@ (p^q) + 1]], r = Floor@ Sqrt@ Times @@ (p^q); Print@ r; AppendTo[lst, r]], {i, 9}, {h, 9}, {g, 9}, {f, 10}, {e, 11}, {d, 14}, {c, 16}, {b, 24}, {a, 8}]

PROG

(PARI) a(n)={

  my(v=[Mod(0, 1)], u, P=1, t, g, k);

  forprime(p=2, prime(n),

    P*=p;

    u=List();

    for(i=1, #v,

      listput(u, chinese(v[i], Mod(-1, p)));

      listput(u, chinese(v[i], Mod(0, p)))

    );

    v=0; v=Vec(u)

  );

  v=vecsort(lift(v));

  while(1,

    for(i=1, #v,

      t=(v[i]+k)*(v[i]+k+1)/P;

      if(!t, next);

      while((g=gcd(P, t))>1, t/=g);

        if (t==1, return(v[i]+k))

    );

    k += P

  )

}; \\ Charles R Greathouse IV, Aug 18 2011

(Haskell)

a193314 n = head [k | k <- [1..], let kk' = a002378 k,

                      mod kk' (a002110 n) == 0, a006530 kk' == a000040 n]

-- Reinhard Zumkeller, Jun 14 2015

CROSSREFS

Cf. A006145, A039945.

Cf. A002110, A002378, a006530, A118478.

Sequence in context: A081483 A118478 A179675 * A270351 A240435 A146116

Adjacent sequences:  A193311 A193312 A193313 * A193315 A193316 A193317

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Aug 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 04:27 EDT 2021. Contains 343810 sequences. (Running on oeis4.)