|
|
A270353
|
|
Denominators of r-Egyptian fraction expansion for Pi - 3, where r = (1, 1/2, 1/4, 1/8, ...)
|
|
1
|
|
|
8, 31, 540, 189864, 22502468823, 547694780221174920178, 287920070745319667821031437298831171428290, 271667810016366767427285213650617821610883263237085072498040538105208873088855853524
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.
|
|
LINKS
|
|
|
EXAMPLE
|
Pi - 3 = 1/8 + 1/(2*31) + 1/(4*540) + ...
|
|
MATHEMATICA
|
r[k_] := 2/2^k; f[x_, 0] = x; z = 10;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
x = Pi - 3; Table[n[x, k], {k, 1, z}]
|
|
PROG
|
(PARI) r(k) = 2/2^k;
f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); );
a(k, x=Pi-3) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,frac,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|