login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270355
Denominators of r-Egyptian fraction expansion for e - 2, where r = (1, 1/2, 1/4, 1/8, ...)
1
2, 3, 5, 78, 4962, 15925310, 303532967750376, 72884922416996896007616951849, 3238110775186648021853203185875679911508503009261997468560, 7716186732679740909751872277405382774000613384297298421745471878603639986756704754013029661605882827711280194233739
OFFSET
1,1
COMMENTS
Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.
EXAMPLE
1/e = 1/2 + 1/(2*3) + 1/(4*5) + ...
MATHEMATICA
r[k_] := 2/2^k; f[x_, 0] = x; z = 10;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
x = E - 2; Table[n[x, k], {k, 1, z}]
PROG
(PARI) r(k) = 2/2^k;
f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); );
a(k, x=exp(1)-2) = ceil(r(k)/f(k-1, x));
CROSSREFS
Cf. A269993.
Sequence in context: A270916 A029975 A042787 * A041131 A084960 A087543
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Mar 17 2016
STATUS
approved