login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A042787
Denominators of continued fraction convergents to sqrt(924).
2
1, 2, 3, 5, 73, 78, 151, 380, 22951, 46282, 69233, 115515, 1686443, 1801958, 3488401, 8778760, 530214001, 1069206762, 1599420763, 2668627525, 38960206113, 41628833638, 80589039751, 202806913140, 12249003828151, 24700814569442, 36949818397593
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 23102, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: -(x^14 -2*x^13 +3*x^12 -5*x^11 +73*x^10 -78*x^9 +151*x^8 -380*x^7 -151*x^6 -78*x^5 -73*x^4 -5*x^3 -3*x^2 -2*x -1) / ((x^8 -152*x^4 +1)*(x^8 +152*x^4 +1)). - Colin Barker, Dec 23 2013
MAPLE
convert(sqrt(924), confrac, 30, cvgts): denom(cvgts); # Wesley Ivan Hurt, Dec 23 2013
MATHEMATICA
Denominator[Convergents[Sqrt[924], 30]] (* Wesley Ivan Hurt, Dec 23 2013 *)
CoefficientList[Series[-(x^14 - 2 x^13 + 3 x^12 - 5 x^11 + 73 x^10 - 78 x^9 + 151 x^8 - 380 x^7 - 151 x^6 - 78 x^5 - 73 x^4 - 5 x^3 - 3 x^2 - 2 x - 1)/((x^8 - 152 x^4 + 1) (x^8 + 152 x^4 + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 23 2013 *)
CROSSREFS
Sequence in context: A270582 A270916 A029975 * A270355 A041131 A084960
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Dec 23 2013
STATUS
approved