login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041131
Denominators of continued fraction convergents to sqrt(74).
2
1, 1, 2, 3, 5, 83, 88, 171, 259, 430, 7139, 7569, 14708, 22277, 36985, 614037, 651022, 1265059, 1916081, 3181140, 52814321, 55995461, 108809782, 164805243, 273615025, 4542645643, 4816260668, 9358906311, 14175166979, 23534073290, 390720339619, 414254412909
OFFSET
0,3
LINKS
FORMULA
G.f.: -(x^4-3*x^3+4*x^2-2*x+1)*(x^4+2*x^3+4*x^2+3*x+1) / (x^10+86*x^5-1). - Colin Barker, Nov 13 2013
a(n) = 86*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 11 2013
MATHEMATICA
Denominator/@Convergents[Sqrt[74], 50] (* Vladimir Joseph Stephan Orlovsky, Jul 05 2011 *)
CoefficientList[Series[-(x^4 - 3 x^3 + 4 x^2 - 2 x + 1) (x^4 + 2 x^3 + 4 x^2 + 3 x + 1)/(x^10 + 86 x^5 - 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 11 2013 *)
LinearRecurrence[{0, 0, 0, 0, 86, 0, 0, 0, 0, 1}, {1, 1, 2, 3, 5, 83, 88, 171, 259, 430}, 50] (* Harvey P. Dale, Nov 09 2017 *)
PROG
(Magma) I:=[1, 1, 2, 3, 5, 83, 88, 171, 259, 430]; [n le 10 select I[n] else 86*Self(n-5)+Self(n-10): n in [1..40]]; // Vincenzo Librandi, Dec 11 2013
CROSSREFS
KEYWORD
nonn,cofr,frac,easy
AUTHOR
STATUS
approved