login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041133
Denominators of continued fraction convergents to sqrt(75).
2
1, 1, 2, 3, 50, 53, 103, 156, 2599, 2755, 5354, 8109, 135098, 143207, 278305, 421512, 7022497, 7444009, 14466506, 21910515, 365034746, 386945261, 751980007, 1138925268, 18974784295, 20113709563, 39088493858, 59202203421, 986323748594, 1045525952015
OFFSET
0,3
FORMULA
G.f.: -(x^2-x-1)*(x^4+3*x^2+1) / (x^8-52*x^4+1). - Colin Barker, Nov 13 2013
a(n) = 52*a(n-4) - a(n-8). - Vincenzo Librandi, Dec 11 2013
MATHEMATICA
Denominator/@Convergents[Sqrt[75], 50] (* Vladimir Joseph Stephan Orlovsky, Jul 05 2011 *)
CoefficientList[Series[-(x^2 - x - 1) (x^4 + 3 x^2 + 1)/(x^8 - 52 x^4 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 11 2013 *)
LinearRecurrence[{0, 0, 0, 52, 0, 0, 0, -1}, {1, 1, 2, 3, 50, 53, 103, 156}, 40] (* Harvey P. Dale, Aug 03 2024 *)
PROG
(Magma) I:=[1, 1, 2, 3, 50, 53, 103, 156]; [n le 8 select I[n] else 52*Self(n-4)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 11 2013
CROSSREFS
KEYWORD
nonn,cofr,frac,easy
AUTHOR
STATUS
approved