The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208204 a(n) = (a(n-1)*a(n-2)^4+1)/a(n-3) with a(0)=a(1)=a(2)=1. 4
 1, 1, 1, 2, 3, 49, 1985, 3814376662, 1208563686390770296199, 128885284912846137074628029815898112630258374651779168689 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS This is the case a=4, b=1, y(0)=y(1)=y(2)=1 of the recurrence shown in the Example 3.2 of "The Laurent phenomenon" (see Link lines, p. 10). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..12 Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001). Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, Advances in Applied Mathematics 28 (2002), 119-144. FORMULA From Vaclav Kotesovec, May 20 2015: (Start) a(n) ~ c1^(d1^n) * c2^(d2^n) * c3^(d3^n), where d1 = -1.699628148275317956229728291667145232598924547592878096541472700997... d2 = 0.2391232782565544642500835033134825869161430421361867747730632704531... d3 = 2.4605048700187634919796447883536626456827815054566913217684094305444... are the roots of the equation d^3 + 1 = d^2 + 4*d and c1 = 0.9668824482256124500532459849115781952211866063916062435395239896336... c2 = 0.0680423294122660088493946488133224274885942757072304155092839505634... c3 = 1.0386083844527725102069795872299989830277012965629707721463998933768... (End) MAPLE a:=proc(n) if n<3 then return 1: fi: return (a(n-1)*a(n-2)^4+1)/a(n-3): end: seq(a(i), i=1..10); MATHEMATICA a[0] = a[1] = a[2] = 1; a[n_] := a[n] = (a[n - 1]*a[n - 2]^4 + 1)/a[n - 3]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Dec 14 2017 *) CROSSREFS Cf. A005246, A208203, A208205, A208211. Sequence in context: A173355 A118222 A191594 * A067092 A041133 A113700 Adjacent sequences:  A208201 A208202 A208203 * A208205 A208206 A208207 KEYWORD nonn AUTHOR Matthew C. Russell, Apr 23 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 14:44 EDT 2021. Contains 346259 sequences. (Running on oeis4.)