login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208206
a(n)=(a(n-1)^2*a(n-2)+1)/a(n-3) with a(0)=a(1)=a(2)=1.
3
1, 1, 1, 2, 5, 51, 6503, 431347892, 23724602128927104843, 37334625705205335653803036700733450756576803
OFFSET
0,4
COMMENTS
This is the case a=1, b=2, y(0)=y(1)=y(2)=1 of the recurrence shown in the Example 3.2 of "The Laurent phenomenon" (see Link lines, p. 10).
The next term (a(10)) has 98 digits. - Harvey P. Dale, Oct 04 2014
LINKS
Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
FORMULA
From Vaclav Kotesovec, May 20 2015: (Start)
a(n) ~ c1^(d1^n) * c2^(d2^n) * c3^(d3^n), where
d1 = -0.80193773580483825247220463901489010233183832426371430010712484639886484...
d2 = 0.554958132087371191422194871006410481067288862470910089376025968205157535...
d3 = 2.246979603717467061050009768008479621264549461792804210731098878193707304...
are the roots of the equation d^3 + 1 = 2*d^2 + d and
c1 = 0.874335057499939749225491691816700793966151250175012051621456437468590379...
c2 = 0.402356411273897640287204171338236092104516307383060911032953286637247174...
c3 = 1.071117422488325114038954501945557033632156032599675833309484054582086570...
(End)
MAPLE
a:=proc(n) if n<3 then return 1: fi: return (a(n-1)^2*a(n-2)+1)/a(n-3): end: seq(a(i), i=0..10);
MATHEMATICA
RecurrenceTable[{a[0]==a[1]==a[2]==1, a[n]==(a[n-1]^2 a[n-2]+1)/a[n-3]}, a, {n, 10}] (* Harvey P. Dale, Oct 04 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthew C. Russell, Apr 23 2012
STATUS
approved