login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208208
a(n)=(a(n-1)^4*a(n-2)+1)/a(n-3) with a(0)=a(1)=a(2)=1.
3
1, 1, 1, 2, 17, 167043, 6618080569762280805809
OFFSET
0,4
COMMENTS
This is the case a=1, b=4, y(0)=y(1)=y(2)=1 of the recurrence shown in the Example 3.2 of "The Laurent phenomenon" (see Link lines, p. 10).
LINKS
Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
FORMULA
From Vaclav Kotesovec, May 20 2015: (Start)
a(n) ~ c1^(d1^n) * c2^(d2^n) * c3^(d3^n), where
d1 = -0.588363990685104156421284586508527584304318862407786509166141051262...
d2 = 0.4064206546327112651910488344937800073049991477253475806754539682375...
d3 = 4.1819433360523928912302357520147475769993197146824389284906870830246...
are the roots of the equation d^3 + 1 = 4*d^2 + d and
c1 = 0.8094826741348488413005600397911253102639462301397489110738060562305...
c2 = 0.5758908197062035276668941188013698534573120455706764136847247903030...
c3 = 1.0094396347013780675988108222508397688561313671701492219003321772184...
(End)
MAPLE
a:=proc(n) if n<3 then return 1: fi: return (a(n-1)^4*a(n-2)+1)/a(n-3): end: seq(a(i), i=0..10);
MATHEMATICA
RecurrenceTable[{a[n] == (a[n - 1]^4*a[n - 2] + 1)/a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 7}] (* Michael De Vlieger, Mar 19 2017 *)
CROSSREFS
Sequence in context: A269836 A114950 A112969 * A290189 A279883 A266166
KEYWORD
nonn
AUTHOR
Matthew C. Russell, Apr 23 2012
STATUS
approved