login
A112969
a(n) = a(n-1)^4 + a(n-2)^4 for n >= 2 with a(0) = 0, a(1) = 1.
10
0, 1, 1, 2, 17, 83537, 48698490414981559682, 5624216052381164150697569400035392464306474190030694298257552124199835791859537
OFFSET
0,4
COMMENTS
A quartic Fibonacci sequence.
This is the quartic (or biquadratic) analog of the Fibonacci sequence similarly to A000283 being the quadratic analog of the Fibonacci sequence. The primes in this sequence begin a(3), a(4), a(5).
LINKS
Eric Weisstein's World of Mathematics, Quartic Equation.
FORMULA
a(n) ~ c^(4^n), where c = 1.0111288972169538887655499395580320278253918666919181401824606983217263409... . - Vaclav Kotesovec, Dec 18 2014
EXAMPLE
a(3) = 1^4 + 1^4 = 2.
a(4) = 1^4 + 2^4 = 17.
a(5) = 2^4 + 17^4 = 83537.
a(6) = 17^4 + 83537^4 = 48698490414981559682.
MATHEMATICA
RecurrenceTable[{a[1] ==1, a[2] == 1, a[n] == a[n-1]^4 + a[n-2]^4}, a, {n, 1, 8}] (* Vaclav Kotesovec, Dec 18 2014 *)
CROSSREFS
Sequence in context: A163319 A269836 A114950 * A208208 A290189 A279883
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jan 02 2006
EXTENSIONS
Name edited by Petros Hadjicostas, Nov 03 2019
a(0)=0 prepended by Alois P. Heinz, Sep 15 2023
STATUS
approved